UNIT- I
MULTIVARIABLE CALCULUS (INTEGRATION)

DOUBLE INTEGRATION

We know that the double integral over the region R of a function

f(x,y) is H f (x, y)dxdy

Case(i)
let R be the region bounded by the lines x=c, x=c,, y=c,, y=c, where

¢,.C,,C,,c, are constant. Clearly the region R is a rectangle.

We know the region integration R, the double integral H f (x, y)dxdy
R

can be written as j j f (x, y)dxdy

C

Case (i)

Consider the double integral fff(x, y)dxady

Suppose x and x, are the function of y say x = f(y), x,=¢(y) and
¢, and c, are constants then the region of integration R is bounded by curve

x = f(y) and x, =¢(y) and thelines y=c, andy=c,




The region shown in figure. Here we integrate f(x,y) first w.r.to x.
Keeping y as a constant and the resulting expression w.r.toy.
I.e first integration is along the horizontal strip PQ and then slide this
strip PQ vertically
Case(iii)
C Yp

Consider the double integral | [ f(x,y)dydx

G %

Suppose vy, and vy, are the function of x say y, = f(x), y,=¢(x) and
¢, and c, are constants then the region of integration R is bounded by curve

y,=f(x) and y, =¢(x) and the lines x=c, andx=c,

R
[
x=cl x=c2
L
S

The region shown in figure. Here we integrate f(x,y) first w.r.toy.
Keeping x as a constant and integrate the resulting expression w.r.to x.
I.e first integration is along the vertical strip RS and then slide this

strip RS horizontally



Problem:-01.
Evaluate fol flz x(x +y)dy dx

Solution :-

Let 1= fol flz x(x +y)dy dx

= [ U2 x(x + y)dy] dx
=f01x[xy+ y?z]y z idx

=f01x {[x 2 + —]— [x 1+ %]} dx
= folx (x+ g) dx

Note:-

If all the limits of double integrals are numbers, then the integrals are
indentified using rectangle box, and any order of integration (x first y
second or yfirst x second) can be followed, both will give same answer.

Problem:-02
Evaluate f23 ) fj dx dy
Solution:-
LU - dxldy
_ 31 X
- fz ; (Iog x)x

= f;% (log2 —log1) dy



_ (31 _ y=3
_fz 5 (log2) dy =log2 [Iogy]y=2

=log 2[log 3-1log 2]
=log2.log 3/2

=log 2*3/2

=log 3.

Problem:- 3
— — a2
Evaluate: [ [y x(x*+ y?) dxdy
Solution
_ 5 x? 2 2
Letl=[ [ x(x*+ y?) dxdy

5 (x? 5 7
= [ Jy o+ xy?) dydx = | [xs + x?] dx

— (5 3 x_y3y=x2
—fo[yx + = y=0dx
= x—6+ x8]5

6 8+«310
:5—6+ 58]

6  8x3

6 24
— 6 |29
=5 [24'

Note

If all the limits of double integrals are not constant, integral

which has variable limit should be evaluated first.

Suppose if the integral limit is a function of x say f(x), then it is

corresponding to y integral .ie y=f(x). Therefore the order of

Integration is

y first x second.



Suppose if the integral limit is a function of y say f(y), then it is
corresponding to x integral .ie x=f(y). Therefore the order of

integration is x first y second.

Problem:-04

1y
Evaluate”xzdydx
00

Solution:
1y 1 X3 y
I I x*dydx = I [?] dy
00 0 0
11
=3[y
0
)
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Problem:-05
1 V1+x2 dxdy
Evaluate [ [, o
Solution:
_ 1 V1+x?2 dxdy
Letl=["J, T
1 V14 x2 1
= ———— dy dx
bl Ty @
_ 1 1 1 Y V1+ x2
_fo [\/1+ x2 tan (\/1+ xz)] 0 dx

= fol [ﬁtan‘l(l) — tan_l(O)] dx

- fol [ﬁﬂ dx



T

1 1

4 fO [\/1+ x2] dx
E . -1 1
” [sinh (x)]O

%[sinh‘l(l) — sinh~1(0)]

=Z[sinh~1(1) — 0]

4

== [log( 1 + Vv2].

4

Problem:-06
Evaluate [[xy(x+y)dxdy over the area between y=x*,y =x

Solution:
Given

xX*=y and y=x
X =x=>x*-x=0
= x(x-1)=0
=x=0, x=1
put x=0wegety=0
put x=1weget y=1

The intersecting points are (0,0) and (1,1)
Hence the limits are
x=0 x=1

y:x2 y=X



J‘J. Xy(x+ y)dxdy Xy (x + y)dydx

X3 Sy <

(x*y + xy?)dydx
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Problem:-07
Evaluate H xydxdy where A is the region bounded by x = 2a and
A

the curve x2 = 4ay.
Solution:-

Given that x = 2a. In the figure x varies from x = 0 to x = 2a. To find the
limit for y, we take a strip PQ parallel to the y — axis, it’s lower end P lies on

y =0 and upper end Q lies on

x2

X2=4ay == Y=




[ [xydxdy :Lﬁ?a:;;xﬂw xy dy dx

2
e[ e

4O
:%J-OZax[x ]dx

16 a?

1
32a2

= 32&2[%;l%$

1 [zﬁaﬁ]
32a2l 6

~gax5dx

CHANGE OF ORDER OF INTEGRATION
The evaluation of some double integrals may be very difficult. In this
case we may evaluate it easily by changing the order of integration in a
given double integral. When we change the order of integration the limits
are also changed but the there will be no change in final answer. The
following points are very important when the change of order of
integration takes place.
(1)  If the limits of the inner integral is a function of x (or function of y)
the first integration should be w.r.to y (or w.r.to x)
(i)  Draw the region of integration by using the given limits.
(i) If the integration is first w.rto x keeping y as a constant then
consider the vertical strip and find the new limits accordingly
(iv) If the integration w.r.toy keeping x as a constant then consider the

horizontal strip and find the new limits accordingly



(v)  After finding the new limits evaluate the inner integral first and then

the outer integral

PROBLEMS ON CHANGE OF ORDER OF INTEGRATION
Problem:-01

4 4
Change the order of integration and evaluate || szyz dy dx
+
0y

Solution:

X

X2 +y?

4 4
Rewriting the given integral in proper order, we have | | dx dy
0y

. . . - ~0
. The region of integration is bounded by );_Z z_ .
A
y=X
(0,4)
‘_// y =4
p (4,4)
.”/’
p
y
/ .
(4.0) y
X=4

y=0; y=x

x=0; x=4
Given integral limits are corresponds to horizontal strip method, So
By changing the order, we have consider vertical strip method

X

X2 +y?

| = dx dy

O t—py
O Ty <
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Problem :-02.

Change the order of integration and evaluate the integral j (x2 + y2) dy dx
0

X Sy )

Solution:

Given integral is in proper form.

. The region of integration is bounded by iiz zz X



A
y=Xx
(0.a)
y=a
(a,3)
x=0
X=a
By changing the order, we have
a vy
J' I x + y dx dy
0 0

x3 !
(—+ yzx] dy
3 0

a3
=5 ] vy
0
Ayt 4t @t
3|4 34 3

Problem:-3
Change the order of integration j zf dydx and evaluate it.
"
Solution:

Given integral is in proper form.

.. The region of integration is bounded by



x=0 y="r ie x> =4y

x=4  y=2/x ie y?=4x

(0,0)

X=y2/4; x=2y1/2
y=0,y=4:

By changing the order, we have

4 2

_ y

= [2fy-Ld
! y = dy
4 1 2

= [ 2y - L ay
0

ES
37 12




Problem:-4

a 2a-x
Change the order of integration and hence evaluate j j xy dy dx
0 x?
Solution:
Given integral is in proper form.
.. The region of integration is bounded by

x=0 y:X— ie. x’=ay

X=a y=2a-x ie X+y=2a

A
\ (0,23) X" = ay
|
|
:i:"l
IR (a,a)
©a) [ y=a
SRR
l:lfl' _
©0)
X+y=2a
x=0

By changing the order, we have R=R1+R>

a 2a-x

j I Xy dy dx

0 x?
a



R1 R2
x=0; x=(ay)/2 x=0; x=y-2a

y=0;y=a y=atoy=2a.

2a 2a-y

I I Xy dxdy
1

0

a ay
I=I I Xy dxdy +
0

0

Xz\/a 2a X2 2a-y
— d — d
(5], o D5 o

0 0

Il
O ey v

2a

a 1 2
- E! y2dy + EI y(2a-y) dy

a

aa 12a
= EI y>dy + EI 4a%y +y*® —4ay®dy
0 a

a(y*) 1 ¢ g4ay* )"
S I A 2ay2+y—— Y
2( 3 2 4 3

0 a

4 B 4 4 4
_a,! 8a“+4a“—326I —~ 2a“+a——4i
6 2 3 4 3

Problem:-5.

Evaluate by changing the order of integration [ [x(x*+y?)dydx
00

Solution:
Given limits are
y=0 (x—axis)
y= x? (Parabola —vertex at origin, openupward)

x=0 (y—axis)
x=a (stline parallal y —axis)



x=0 =y
/ Pla,a?)
/ x=a
e
After the Change the order the limits are
x=\y
X=a
y=0
y=a’

2

<

x(x* + y*)dydx :I I x(x* + y*)dxdy

0y

Oty v
O ey

=

_6a°+4a°-2a°-3a°
- 24
_4a°+a°

24

_a’(a’+4)
=

Problem:-06

Evaluate j J' xydydx by changing the order of integration
0 0

Solution:
Given limits are



y=0 (x—axis)

y=vJa’-x* =y*=a’-x*=>x*+y’=a’* (circle)
x=0 (y—axis)
x=a (stline parallal y —axis)

After the Change the order the limits are

0

a ij a-y
=yl W

%]

1a 2 2
= y(@ -y

0
2y
=&y =y )y
0

:i(azyz_v_“]a

2 2 4),
_1fal &
202 4

a4
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Problem:-7
a yal-y
Evaluate by changing the order of integration j j y dydx
0 a-y
Solution:
a yal-y
Rewriting the given integral in proper order, we have j j y dxdy
0 a-y



The region of integration IS bounded
=0 X=a-y ile. X+y=a
=a x=,a’-y* ie x*+y’=a’
A
y=a
X2 + y2 — a2
L, ¥=0
X+y=a
By changing the order, we have
a +a?-x?
| = J j y dydx
0 a—X



Problem:-8

1 2-y
Change the order of integration and hence evaluate J' xy dx dy
0 y2
Solution:
Given integral is in proper form.
The region of integration IS bounded by
y=0 x=y’
y= X=2-y lex+y=2
A
0,2)
y=1
y=0
0.0) x=1
X+y=2

By changing the order, we have

Jx 2
j Xy dydx+J'

0 1

Jx 2-x
y? 0 [y
J.x(?] dx + J.x[?l dx

0 1

T Xy dy dx
0

= ot—

o

17 1%
—I X% dx + —I x(2—x)2dx
20 21

1
lj X2 dx +
20

1(x) 1 , X 4 Y’
) A et ) G A A
23,2 4 3 )

4x +x3 —4x? dx

N |-
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TRIPLE INTEGRAL
Consider a function f(x,y,z) defined at every point of the three
dimensional finite region V. divide V into n elementary volumes

oV, 8V,,...oV. . Let (x.,y,,z) be any point within the rth sub-division sV, .

Consider the sum i f(x.,Y,,2,)0V.

r=1

The limits of this sum, if it exists, as n—« and §V. »« is called the
triple integral of f(x,y,z)over the region V and is denoted by
m f(x,y,z)dV

For purposes of evaluation it can also be expressed as the repeated integral

Xy Yy 2y

j j j f (x, y, z)dxdydz

XN X,
If x,x, are constants:y,,y, are either constants or functions of x and
z,,z, are either constants or funtions of x and y then this integral is

evaluated as folloes:

First f(x,y,z)is integrated w.r.to z between the limits z and z, keeping

x and y fixed. The resulting expression is integrated w.r.to y between the

limits y, and y, keeping x constant. The result just obtained is finally

integrated w.r.to x between the limits x, and x,

X | Y2 (X) | z(xy)
Thus I:I I If(x,y,z)dzdydx

X Y1 (x) 7 (X,y)

Where the integration is carried out from the innermost rectangle to the

outermost rectangle.



Problem:-01

abc
Evaluate”j (x+y+2)dzdydx
000
Solution:
abc b Z
[[[(x+y+2) dzdydx:”(xuyz _] dydx
000 'Y 2
ab
:“(cx+cy+_] dydx
00
¢ 2
:I(CXV+°—+—y] dx
’ 0
:J.(bcx+—+_]dx
0
x? bl bc? Y
—bc+ = x4+ —x
2 2 2 ),
a’ ab’c abc?
=|bc—+ +
2 2 2
a’bc ab’c abc?
2 2 2
_abc(a+b+c)
Problem :-2

loga x x+logy

Evaluate | [ [ (e"*)dzdydx
0 0 0
Solution:

loga x x+logy oga

J‘ ( ><+y+Z dZdydx_ -([ -I X+y+z x+IOgy

0 0 0
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0
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Il
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1

3 9

_ |og . eSIoga _0 ~ 4(esloga) _eo)
3 9

loga
e3X 4e3X .
+€

0

+eloga _e0:|
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3 9 9

Problem:-03.
Evaluate foa fob foc xyz dz dy dx
Solution:-

foa fob foc xyz dz dy dx= foax dx foby dy focz dz
b
= 5], =1L 2],

oo

_ (abc)?
~ 8

Problem :-04
Evaluate foa fob fob( x%+ y2+z2) dz dy dx

Solution:-



Given | = fa fb fb( x%+ y2+z2) dz dy dx

f f [—+xy +xz ]C dy dz

[['[2rereesaras

3
f [—y+—c+cz y

f [—b+—c+cz b

3 -

b3
3

c3 b3

3

abc
= —(a? + b? + c?)

Problem:-05

3

Evaluate: foz f03 foz xy? zdz dy dx

Solution

Giventhat 1= [ [’ [

xy? zdz dy dx

_ 2 3 2
= [yxdx [ y*dy [ zdz

B x22-y3
(2] ]3

o

= 26

2]

7-3k-1

Z

—bz+?cz+c— b

3

3
a

—ba+?ca+c— b

3

|

]dz
0

dz



Problem:-06

1
Evaluate j
0

Solution:-

Jl. T 1_]:ydzdydx:j. T [Z]Z‘X—ydydx
:J' r [1—x— y]dydx
:j_(l—x)—x(l—x)—@}dx
:Jl'_(l— X)(L— X) - (1‘2")2 }dx
= l’ _ (1_2)()2 }dx
Ta-x°T
=l
_1
6

Problem:-07

Evaluate ”j% over the region bounded by x=0, y=0,z=0
Q+x+y+2)
and x+y+z=1
Solution:-

The region is x=0, y=0 and x+y+z=1

Hence the limits are

x=0 x=1 (put y=0, z=0)
y=0 y=1-x (put z=0)
z=0 z=1-y-z

dzdydx B Lo ey dzdydx
J.”(1+x+y+z)3 _J; ! ! L+ x+y+2)



I (1+ X+ y +z) > dzdydx
0

1-x-y

1-x -2
I ((1+x+y+z) ] dydx
0

-2 0
:_i H(z)'z_(uxw) Tayax
:_%l’ l[ —(1+x+y) }dydx
11 r 1-x
== —y+(1+x+y)} dx
:_%: :%(1—x)+(2)_1—(1+x)‘1}dx

1 F
= _i i(l_x)+(£]_ij|dx
27 |4 2) 14X

1

1 [ 2
:-%0 _%(x—%ﬂ(%x]—log(&x)l
11, 1, (1
[ |2@a-2)+| = |-1og(2
20 4 ¢ )+(2] 0g( )}
5
og 16
Problem:-08
Evaluate ||| dZdde over the first octant of the sphere.
Ja —xt—y* -2

Solution:-

The equation of sphere x2+y2+z2=a2 and the limits are
x=0 X=a

y=0 y=va-x*

z=0 = \/m

W eyt dzdydx

dzdydx ¢
J“\/az—xziyz—zz_! ! I \/(a

0

-y -7°



JE. Jai—x?
:EJ [ dydx
0 0
7Ta Va?-x?
:EJ [y]o dx
0
TG 2 2
=—|+va" —x"dx
2]
_ , .
A RN PO +a—sin‘1(§ﬂ
2|2 2 a)l,
B 2
:% 0+a7sin‘1(l)—0}
_zla’z
2|22
77:2 2
B

GREEN’'S THEOREM

If u, v, Z—U, & are continuous and single valued functions in the

X OX
oX oy

R

region R enclosed by the curve C, then ju dx + vdy =
C

Problem:-01
Verify Green’s theorem, in plane forj (3x2—8y2)dx + (4y - 6xy)
C

dy where C is the boundary of the triangle formed by the linesx =0, y=0
and x +y =1 in the xy plane.

Solution:-

Green's theorem is [u dx + vdy = ”(@_a_u] dx dy
C R

oX oy



B (0,1)

Xx+y=1
A (1,0)
> X
O (0,0)
u=3x"-8y? V=4y—6xy
6_u:_16 @:—Gy
OX
The limits are
y=0 y=1-x
x=0 x=1
v ou s
——— |dxdy = —6y+16Yy)dydx
(55 Jor= [ ooy
11-x
:jjloydydx
00
1 2 1-x
zloj(y_]
0 2 0
! 2
:5J(1—x)
0
A
-3 0<
5
S e 1
3 @

judx+vdy=judx+vdy+judx+vdy+judx+vdy
C OA AB BO

Along OA, y=0 and hence dy=0. Also x varies from O to 1.



" j (3x2 —8y2)dx+(4y—6xy) dy :i 3x%dx = [xs}: =1

OA

Along AB, x+y=1or x=1-y and hence dx=-dy. Also y varies from O

to 1.
L [(3x°-8y?)dx+(4y—6xy)dy [ —(3(L-)’ -8y*)dy~+(4y—6y(L-y))dy
BO — AB
L Ve ! 8
= [ 11y? +4y—-3dy = [112-+2y* -3y | ===4+2-3=2
£y+y y{3+y yl o .
Along BO, x=0 and hence dx=0. Also y varies from 1 to O.
0
" j(3x2—8y2)dx+(4y—6xy)dy :J. 4ydy = [Zyz]j =-2
BO 1
. 2 2 8 5
j (3x -8y )dx+(4y—6xy)dy:1+§—2:§ e (2)
C
From (1) and (2)
Green’s theorem is verified
Problem:-02

Verify Green’s theorem in the plane for <f>(xy+ y*)dx+x*dy where C is

the region bounded by y=x and y=x2

Solution:-

Green's theorem is [u dx + vdy = j(@—a—u] dx dy
c ox oy

R

u=xy+y’ = x?

v
a—u:x+2y @:ZX
OX



desmos wn o [ 2 © ®

+
(]
2 -
y=x? 1 (1.1) -

'
(0.0)

The point of intersection of y=x2 and y=x are
(0,0) and (1,1) and the limits are

x=0 x=1

y=x2 y=X

J55 )

R

(2x—x—2y)dydx

Otk Ot—ik o\ Ot—r
> by <

(x—2y)dydx

Xr\:._ix

-y

2)—(x3—x“ﬂdx

1
—~
>

N
I
>

Iudx+vdy=judx+vdy+judx+vdy
¢ OA AO

Along OA y:XZ, dy:2xdx



ju dx + vdy= j(xy+y)dx+x dy
OA

Along AO, y=x, dy=dx

J'u dx + vdy= I (xy + y)dx + x?dy
AO

[xz + X2+ xz]dx

GAUSS DIVERGENCE THEOREM.
The surface integral of the normal component of a vector function f
over aclosed surface S enclosing volume V is equal to the volume integral
of the divergence of f taken throughout the volume V.

ie. jsjf.ﬁ ds = jJ v.T dv



Problem:-01
Verify Gauss Divergence theorem for F = x2i + y2j + z2k over

the volume of the cuboid formed by the planes x=0,x=a,y=0,y =D,
z=0,z=c.
Solution:-

Gauss Divergence Theoremiis [[fAids = [[[v.f dv
S Vv

— -0 =0 ~ 0 2% 27 2y, —
V.f = (|§+15+k§].(xwy j+z k) = 2X+2y+2z

”JVF dv :j i j (2x+2y+2z) dzdy dx
v 0 0 0

!

[2xz +2yz+z?]; dydx

O e T

[2xc+2yc+c?] dydx

I
O ey »
O e T

[2xcy + y* c+yc’]) dx

I
O ey »

[2xch +b? c+bc?] dx

O ey

= [x* cb+ xb® ¢ + xbc?]3
= [a® ch+ab’® c+abc?]
=abc[a+b+c] ... D

E

D< " F

<’\>

S1 : OGFE B S2 :ABCD



Toevaluate [[ f.Ads where S=5,+S,+S,+S,+S,+S,
S
On S,:OGFE y=0&n=-j andhence f.n=—y?=0
” fAds =0
Sy
On S,: ABCD y=b &n=] and hence f.n=y?=b?
J'J' fAds :J'
S, 0
On S,:OADE x=0&n=-i andhence f.n=—x?=0
” fAds =0
Sy
On S,:BCFG x=a&n=i andhence f

.:”fﬁds:i

S

O ey

b? dx dz = sz adz = ab’c
0

n=x*=a’

Oy T

a’ dy dz = a’ [ bdz =a’bc
0
On S,:0ABG z=0&n=-k andhence f.n=—2z2=0
.'.”f.ﬁds =0
Sy
On S,:CDEF z=c &n=k andhence f

.:”fﬁds:i

S

.n=z?=c?

Oy T

¢’ dy dx =c’ [ bdx =c’ba
0
o J[fhids =[a’cb+ab’c+abc’] = abcla+b+c] ....(2)
S

From (1) & (2) Gauss Divergence Theorem is verified

Problem :-02

Verify Divergence theorem for f =4xz i — y2j + yz k, taken over
the cube bounded by the planes x=0, x=1, y=0, y=1, z=0 and z=1.
Solution:-

Gauss Divergence Theoremiis [[fAids = [[[v.f dv
S Vv



v.f = (Ti+]—+lz§]. (4sz—y2]+yzE) = 47-2y+y=4z-y

ox oy
1 1 1

IJJV'de :j I f (4z-y) dz dy dx

0 0 O

[22% - yz]; dydx

Il
O ey
O ey

[2—y] dydx

Il
O ey
1 O t—y
N
<
|
r\>|‘<N
L 1
o [
o
>

I
O ey

Il
O ey
N w
o
<

A
/
Y

S, :OGFE B S, ABCD

On S,:OGFE y=0&n=-j andhence f.n=y?=0

” fAds =0
5

On S,: ABCD y=1&n=j andhence f.n=-y’=-1

L [[fads =]
S, 0

1
(- dxdz=—] dz=-1

0

O ey



On S,:OADE x=0&n=-i andhence f.n=—4xz=0
.'.”f.ﬁds =0

Sy
On S,:BCFG x=1&n=i andhence f.n=4xz=4z

- 11 1 1 72 L

S fAds = 4z dy dz = 4 tdz=4| zdz=4|—| =2

[as -[ Jaau-af preef a3
On S,:0ABG z=0&n=-k andhence f.n=-yz=0

” fAds =0
Sy
On S,:CDEF z=1&n=k andhence f.n=yz=y

C((Fa [ Ly T 17 1
ffiaes <] [yoye- | Hodx:§! -1

S 0
e 17 3
...[SJ.f.n ds :[—1+2+Ej| :E ..... (2)

From (1) & (2) Gauss Divergence Theorem is verified

Problem:-03

Verify divergence theorem for F = x2i +z j + yz k over the cube
Formed by the planes x=+1,y=41,z=4+1.

Solution:-
Gauss Divergence Theoremiis [[fAids = [[[v.f dv
S Vv

- :»8 —.*8 —’a g - g
V= |i—+]—+k—1.(x%i+z zk) = 2x+
(I 8x+18y+ 82] ( +Zj+ Yy ) y

1

[[]v.fav :j j [ (@x+y) dzdydx

-1 -1 -1

1 1

= | [ [2x+yl[eL, dydx

-1 -1

1 1

:ZJ j [2x+y] dydx

-1 -1



= ZJ. [4x+1] dx
a
= 2[2x2 +X]1_1

= 22+1-2-1]

A
el
Y

Sl : OGFE B Sz :ABCD
On S,:OGFE y=0&n=-j andhence f.n=-z

”Fn ds :-j j Z dx dz:—j [2x], dz:—j [22] dz = —[2%]}, = -[1-1] =0

-1 -1

On S,: ABCD y=1&n=j and hence f.n=z

c [ A ds :j j z dx dz = j [2x}, dz = j [22] dz = —[2°], =[1-1] =0

-1 -1 -1 -1

On S,:0ADE x=-1&n=-i andhence f.n=—x*=-1

1 1 1

cf[fAds = [ (<D dxdz=-] [2]dz=-2[2] =4

-1 -

On S,:BCFG x=1&n=i andhence f.n=x?=1



c [ Fhds :j j ldx dz = j [2] dz = 2[2] = 4

-1 -1 -1

On S,:0ABG z=-1&n=-k and hence f.n=—yz=y

” fAds =
S5

On S,:CDEF z=1&n=k andhence f.n=yz=y

” fAds =
S6

1 1 1

[ [ yoxdy=[ [y, dy = | yldy=[y’F, =[1-1]=0

-1 -1 -1 -1

1 1

[ ydxdy= [ [y dy = [ [2y]dy =[y’}, =[L-1]=0

-1

[T

1

From (1) & (2) Gauss Divergence Theorem is verified

Problem:-04

Verify Gauss divergence theorem for F = (x3-yz)i—-2x2y] + 2k
over the cube bounded by x=0, y=0, z=0, x=a, y=a, z=a.
Solution:-

Gauss Divergence Theoremiis [[fAids = [[[v.f dv
S Vv
V.f = (T—+]—+E—]. ((x3—yz)7—x2y]+2R) = 3x2-2x* =x*
X A

[[[v.f av :j j j (x?) dzdy dx

:a.a{g}::a.a{%ﬂ :a_; ....... 1)

Toevaluate [[ f.Ads where S=5,+S,+S,+S,+S,+S,
S



D % ]
—
53 54
G
A x>
<
51 : OGFE B SZ :ABCD
On S,:OGFE y=0&n=-] and hence f.n=2xy?=0

” fAds =0
Sy
On S,: ABCD y=a &n=j and hence f.n=-2x’y=-2x%a

- a a a 372
.'.J;!f.n ds :—Zal' { x? dx dz:—2a£ {Xgldz :_TI dz:—T

On S,:0ADE x=0&n=-i andhence f.n=—(¢-yz)=yz

. a a a a 278 5272 2 .2 4
.-.J;!f.nds :£ ! yzdydz:f ydyj zdz:{y?} {%} :%%:%

0 0 0 0

On S,:BCFG x=a&n=i andhence f.n=x’=(x*-yz)=a’-yz

a a a a a4
a’—yzdydz = a’ dy dz — yzdydz =a’.a.a—-— = a
[foom-] frova-voa?

0 0

J'J' fAds =
s,

On S,:0ABG z=0&n=-k andhence f.n

c [ FAids

Ss

O ey
O ey v

2

Il
Oty v

jl (-2) dy dX:(—Z)i dyj dx = —2a.a = —2a°
0 0 0

On S,:CDEF z=a &n=k andhence f.n=2

c [ Fhids :f j (2) dy dx:(z)j dyj dx = 2a.a = 2a®
Se 0 0 0 0

5 4 4 5
a

J'J. fads =22+ & a5 2 9a24022=-2 (2)
S 3 4 4 3



From (1) & (2) Gauss Divergence Theorem is verified

Problem:-05

Use Divergence theorem to evaluate || f.nds where
S

f =4x7-27 +z2k and S is the surface bounding the region x2+y2=4
z=0 andz=3,
Solution:-
Given f =4xi-2y2j +z2k
V.f = (T%+ ]%HZ%]. (4xT—2y2]+z2 R) = 4X—4y+27
By Gauss Divergence Theorem |[[fids = [[[v.f dv
S v

Il
L=

|
~
Bl
x xr\:
s

(4-4y+2z) dzdydx

O ey W

N

(42 —~4yz+ 23)2 dy dx

Il
A AN
'—:?
x

2 Jax?
= | (21-12y) dydx
-2 _W
2 Jax? 2 Jax?
=21 [ dydx-12[ [ 'y dydx
2 _fay? -2 _4-x?

= 21 (areaofcirclex2+y4=4) — 0 {sinceyis odd}
21 (4n)
84n



STOKE’S THEOREM

The surface integral of the normal component of the curl of a vector
function f over an open surface S is equal to the line integral of the
tangential component of f around the closed curve C bounding S.

e [f.dr=[[(vxf).fds
c S

Problem:-01

Verify Stoke’s theoremfor f = xy i— 2yz j— xz k where S is
the open surface of the rectangular parallopiped formed by the planes
x=0,x=1,y=0,y=2 and z =3 above the XY plane.
Solution:-

Stoke’s Theoremis [f.d7=[[(vxf).Ads
C S

f=xyi—-2yzj—xzk

Here C is the boundary of the rectangle OGBAO, in the XQOY plane
bounded by the lines x=0,x=1,y=0,y=2.

r=xi +yj+zk
=>dr= dxi +dy j +dz k

Now f. dr = [xyT—Zyz]—sz] . (de—dy]—dzR) = Xy dx — 2yzdy — xzdz

J' f.dr = J' [xyT—Zyz]—sz].(de—dy]—dzR) = Xy dx — 2yzdy — xzdz

C C



to 1.

to 2.

to O.

to O.

Along the line OG: y=0,z=0 and dy=0,dz=0. Also x varies from O

~. f.dr =0 and hence j T.dr=0

oG

Along the line GB: x=1,z=0 and dx=0,dz=0. Also y varies from 0

. f.dr=0 andhence j f.dr =0

GB

Along the line BA: y=2,z=0 and dy=0,dz=0. Also x varies from 1

1

- f.dr = 2x dxand hencej T.dr = T 2x dx = [xz}o =1
BA 1

Along the line AO: x=0,z=0 and dx=0,dz=0. Also y varies from 2

~. f.dr =0 and hence j T.dr=0

i ] Kk

- 0 0 o| = = = = = =

Also vxf =|— — —|=i0+2y)-j(-z2-0)+k(0-x) =2yi+zj-xk
oXx oy oz
Xy -2yz -Xxz

The surface S is the 5 surfaces of the parallopiped except z=0

Toevaluate [[(Vx f).fids where S =S5,+8,+5,+S,+S;
S

On S,:OGFE y=0& n=-j and hence (W?).ﬁ:—z

J;J(Vx F).ﬁ ds =—

On S,: ABCD y=2&n=] and hence (VxT).ﬁzz

1 3 22 3 9
zdzdx:—fdxj zdz:—(l)(?] :_E

0 0 0

O e
O Ly O



On s,:OADE x=0&n=—i andhence (Vxf).n=-2y

U(fo).ﬁ ds = Js. j 2y dydz——ZJ'dzJ' y dy= (- 2><3)[ 2] ~12

On s,: BCFG x=1&n=i and hence (vxTf).n=2y

IV )fas

On s,:CDEF z=3&n=k and hence (Vxf).n=-x

J'J' fAds =—
Ss

jsj(w F).ﬁ ds :—12+12—%+%—1_ L, (2)

2

ydydz—ZJ'dzJ'ydy (2x3)[ ] =12

0

o'—.w
Oy

2 1 X2 L
xdxdy:—j dyj xdx:—z{—} =-1
0 0 0

O ey
O ey

From (1) & (2), Stokes Theorem is verified

Problem:-02
Verify Stoke’s theorem for vector field f = (2x-y) i— yz2j-y2zk
over the upper half surface x2+y2+z2 =1, bounded by its projection on
the xy plane.
Solution:-
Stoke’s Theoremis [f.d7=[[(Vxf).1fds
S

C



s:xivizi=1

‘F

Z
Here C is the boundary of the region R, which is the projection of the
surface Son z=0 plane, namely the circle x* +y* =1.
Now
f.dr = [(Zx—y)f—yzzj—yzzﬁ] : (de—dy]—dzR) = (2x—y)dx - yz*dy — y*zdz
OnC, z=0 x*+y’=14,-gandhence f. dr=(2x-y)dx

[ Tudr=] (@x-y)dx

putx =cosé, y=sind

27
= [ (2c0s0-sin6)(~sin0 o) .
) dx=-sin0do

2 2
:j sinzede—j sin20do
0 0

2 2
:%j (1-cos20) do — | sin20de
0

0

_1[, sin20 7 T cos20]”
2 2 0 2 0

» =

Also vxf =| —
OX

2X—-y -—Vyz

&)|Q) —

2

k
a e 1 e r
el iI(-2yz+2yz)— j(0-0)+k(0+1) =k
z
_yzz

The unit normal vector to the surface ¢:x* +y*+2z° =1is ﬁzv—¢

[Vl



:»8 —.*6 _’a
Vo = |1 —+]—+k—|(x2+y?+2°-1
¢ (8x oy az]( Y2t

= 2xT+2y]+22E

|V¢|:\/4X2 +4y? +47° = 2\/X2 +y*+2° =21 =2

Al Vo _ 2Xi+2yj+2zk _ xT+y]+zE
Vgl 2

ds — dquy _ dx dy
n.k |Z|

”(Vx?).ﬁds:”z.% = [[ dxdy = Areacf R =7 ......(2)

From (1) and (2), Stoke’s Theorem is verified.



UNIT-2
ORDINARY DIFFERENTIAL EQUATION
Introduction:-

In mathematics, a differential equation is an equation that relates one or
more functions and their derivatives. In applications, the functions generally
represent physical quantities, the derivatives represent their rates of change,
and the differential equation defines a relationship between the two. Such
relations are common.

Mainly the study of differential equations consists of the study of their
solutions (the set of functions that satisfy each equation). Only the simplest
differential equations are solvable by known methods, Often when a closed-
form expression for the solutions is not available, in that case the solutions
may be approximated numerically using computers.

Application:-

The differential equations play a prominent role in many disciplines
including engineering, physics, economics, and biology.

The differential equations arise from many practical problems in
oscillation of mechanical and electrical system, Bending of beams, Conduction
of heat, velocity of chemical reactions etc.,

DIFFERENTIAL EQUATION (DE)

An equation involving derivatives of one or more dependent variables

with respect to one or more independent variables is called a differential

equation.



Example:-

%+3T22X+%: e'-———(@

e RLESEC

%+ﬂ =10 —-————- 3

dt dt

LB RS

dt dt dt dt
Note :-

(1) If there any changes in the value of y when x changes, then we say
that y isadependent variable and x is independent variable.
ie y depends on x. Otherwise we say that y does not depend on x.

(2) Ifthereis no change in the value one variable when other change
then both are called independent variables.

(3) Equation (1), (2) and (3) are called differential equations,
equation (4) is called simultaneous differential equation.

(4) Inequation (1), 't"is independent variable and 'x' is dependent
variable which depends on 't'.

(5) Inequation (2), Independent variables are 'x','y', 'z' and
dependent variable is 'u’ which depends on x, y and z.

(6) Inequation (3) & (4), Independent variables are 'x','y" and

dependent variable is 't which depends on x ,y.



ORDINARY DIFFERENTIAL EQUATION (ODE)

The equations having derivatives with respect to only one

independent variable are called ODE.

Example:-

Note:-

(1)

(2

d'x d?x dx
+—+—=e-——-(1
dt*  dt? dt @
%+d—y:10 ————— (2)
dt dt
L
dt dt dt dt

dy = (x+sinx)dx ————(4)

d d* d°
The differential operator [&d?d? ------- ] in the differential
equation are called ordinary derivatives.
In other words, DE having only one independent variable is called
ODE.
PARTIAL DIFFERENTIAL EQUATION

The equations having derivatives with respect to at least two

independent variable are called ODE.

Example:-

o%u

o’u o

aXZ

+—t
ayZ 622



Note:-
- - a 62 83 - - -
(1) Thedifferential operator | 5 52 "o in the differential
equation are called partial derivatives .

(2) Inother words, DE's having more than one independent variables

are called PDE.

ORDER OF A DIFFERENTIAL EQUATION

The order of a DE is the highest-order derivative that it involves.

Example:-
d'x d?x dx
+—+—=¢ -———(1
dt*  dt* dt @
%+d—y:10 ————— (2)
dt dt
LI SN S
dt dt dt dt
2
(;tzx+10x:cost (4
2 2 2
al2J+al:+al;|:0.————(5)
ox® oy oz
3
U 50U 10— s)
OX oy

Since the highest order derivative in ODE (1) is 4, therefore the
order of the ODE is 4.



Since the highest order derivative in ODE (2) is 1, therefore the
order of the ODE is 1.

Since the highest order derivative in ODE (3) is 1, therefore the
order of the ODE is 1.

Since the highest order derivative in ODE (4) is 2, therefore the
order of the ODE is 2,

Since the highest order derivative in PDE (5) is 2, therefore the
order of the PDE is 2

Since the highest order derivative in PDE (6) is 3, therefore the
order of the PDE is 3.

DEGREE OF A DIFFERENTIAL EQUATION
The degree of a DE is the power of the highest order derivative,
after the equation has been made rational and integral in all of its
derivatives.
EXAMPLE:-

dx ) (dx)

[dt4] +[?] e Y

L

(dtj +(dtj _10 2

2£%T_(d_yj1:1, 3[%T+[d—yjl=0 ————— ®3)
dt dt dt dt




2
—} +10x = cost ————(4)

SRR R
OX oy oz

otu ouY
-5 28| 210 ————(6
(5] ®

Since the power of highest order derivative in ODE (1), (2) and

(3) are 1, therefore the degree of the ODE's are 1.
Since the power of highest order derivative in ODE (4) is 2,

therefore the degree of the ODE's is 2.
Since the power of highest order derivative in PDE (5) is 2,

therefore the degree of the ODE's is 2.
Since the power of highest order derivative in PDE (6) is 1,

therefore the degree of the ODE's is 1.
Since the power of highest order derivative in ODE (1) is 1,

therefore the degree of the ODE is 1.

EXACT DIFFERENTIAL EQUATION
A differential equation of the form Mdx+Ndy=0, where M and N

are function of x and y is called exact differential equation if and only if

M N _,
oy x o



Theorem
The Necessary and Sufficient condition for the DE Mdx+ Ndy =0 to

be exact if %_@:o or M _oN

X oy  ox

METHOD OF SOLUTION OF EACT DIFFERENTIAL EQUATION
The solution of Mdx+Ndy =0 is given by

J' Mdx + j (terms of N not containing x)dy=c

y constant

Problem:-01

Solve 2xydx + (x? +3y?)dy = 0.

Solution:-
The given equation 2xydx + (x* +3y?)dy =0. ----- (D
Equation (1) is of the form Mdx+Ndy=0  ----- (2)

By comparing both the equation's (1), (2) left hand side, we get
Let M =2xy and N =x*+3y?
Differentiate M partially with respect to 'y' (Assuming ‘X' constant), we get

M _ XM: 2x.1=2x
oy oy



Differentiate N partially with respect to 'x' (Assuming 'y' constant), we get

oN _ a(x*) 2 0 oy _ 20_9y 4
T oo Y () =2x+3y" 0= 2x 4)
[ O _ et and ﬁzoj
OX
From the equations (3) and (4), we get
oM N
oy ox

Since the necessary and sufficient condition is satisfied, thus the given DE
IS exact.

Hence the solution of given exact DE is given by

J' M ox + j (terms of N not containing x)dy=c

y constant

I 2XyOX + I (3y?)dy=c

y constant

n+l
2 xox + 3| (y?)dy=c o [xrox =2
yyco‘r[stant " I(y ) g [ I n+1j
X2 y3
2y| — [+3| — |=cC
5 ) %)
yx2+yi=c

Which is required solution.



Problem -02

Solve (2ye®* +2xcos y)dx + (€2* — x?sin y)dy = 0.

Solution:-
The given DE is (2ye?* + 2xcos y)dx + (e —x*siny)dy=0. ----- Q)
Equation (1) is of the form Mdx+Ndy=0O - (2)

Comparing the above two equations, we get
M =2ye* +2xcosy,N =e”* —x*siny

Differentiate M partially with respect to y (Assuming 'x' constant), we get

@=i2ye“ +22xcosy
oy

ay oy

M _ 2e2xiy+2xicosy

oy oy oy
M _ 2e* .1+ 2x(-siny) ( gcos ax _ —asin ax]
oy OX
M _ 262 _oxsin y ----(3)

oy

Differentiate N partially with respect to x (Assuming 'y’ constant), we get

ON 0 , 0 5.

—=—e¥ -——x’siny

OX  0OX OX

ON 0 , . 0

—=—e¥ —siny—x

oX  OX OX

N _ 2 _sin y.2X N L
OX OX OX



N _ 26 _oxsin y ----(4)
OX

By comparing the equations (3) and (4), we get

M _aN
oy ox

Since the necessary and sufficient condition is satisfied, thus the given
DE is exact.

Hence the solution of given exact DE is given by

J' M ox + J‘ (terms of N not containing x)dy=c

y constant

I (2ye™ + 2x cos y)ox +I(0)dy:c

y constant

I (2ye™ +2xcos y)ox = ¢

y constant

2y J' e ox +cosy j 2x8x+j(0)dy:c

y constant y constant

2x 2
X

2ye +COSsy.—=¢C
> r :

ye” +x*cosy =C.

Which is the required solution.



Problem -03

Prove that the following equation is exact, find the solution y =

Solution:-

2
The given equation is y :w ----- (1)
X" —ey

It can be rewritten as follows

dy _3x* —2xy
dx  x*-2y

(x* —2y)dy = (3x* — 2xy)dx

3x* —2xy)dx+(2y-x*)dy=0 - 2
Equation (2) is of the form Mdx + Ndy = 0.-----(3)
Comparing the equations (2) and (3), we get

M = (3x° — 2xy) & N =(2y-x?%)

3x% —2xy
X2 -2y

Differentiate M partially with respect to 'y’ (Assuming 'x' constant),

we get

@ =£3X2 _QZXy
oy oy oy
@:3)(22(1)_2)(&)/
oy oy oy
oM

—=3x*.0-2x1
oy



oM

&2 ——-(4)

Differentiate N partially with respect to 'x' (Assuming 'y' constant),

we get

ON _0,,_ 0.

OX  OX OX

ON 0 o ,

—=2y— (1) ——x

OX yax() OX

a—N:Zy.O—Zx

OX

N _ox ——(5)
OX

By comparing the equations (4) and (5), we get

M _oN

oy  OX

Since the necessary and sufficient condition satisfied, therefore the
given DE is exact.

Hence the solution of given exact DE is given by

I M ox + I (terms of N not containing x)dy=c

y constant

I (3x% - 2x y)8x+j(2y)dy:c

y constant



3 J' X2OX — 2y j x6x+2jydy:c

y constant y constant

X3

2 2
3% oy X 0¥ _¢
3 2 2

x> —x’y+y*=c.

Which is the required solution

EXERCISE

Solve the following equations

1. ye¥dx+(2y+e*)dy=0

2. (x* —ay)dx = (ax— y*)dy

3. (X +y*—a®)xdx+(x*—y*—b*)ydy =0
4, (x* —4xy—2y*)dx+ (y*> —4xy —2x*)dy =0
5

(y°e”" +4x°)dx+ (2xye™ —3y’)dy =0 Ans. % +x —y® =¢
0. {y(1+ E] + C0S y} dx+ (x+log x—xsiny)dy =0 Ans. (x+log x) y+x cos y=c
X

7. (1+2xycosx* —2xy)dx + (sin x* — x*)dy =0 Ans. x+ysinx® — yx® =c¢

8 d_y+ycosx+sm y+y:0

. - Ans. ysinx +(Sinx+y)x=c
dx SinX+ XCcosy + X

9. (2x2+3y?-7)xdx-(3x? +2y?-8)ydy=0 Ans. x> +y? =3 =c(x* - y* -1)°

10. (3x*+6xy?)dx+(6x>y+4y®)dy=0



LINEAR DES

A differential equation is said to be linear, if the following conditions are
satisfied,
(i) (a) Derivative are of degree one in each term of DE

(b) Dependent variable appears with degree one in DE.
(i)  Thereshould not be any term containing the product of

(a) Differential coefficient with dependent variable

(b) Differential coefficient with each other
(ii1) Neither differential coefficient nor dependent variables are in

transcendental form.

Note
(1) If any one of the condition violated, then the DE is non linear,
(i1) Transcendental form means that it involves trigonometric function like

ev, cosy, e/dx tany, herey is dependent variable.

EXAMPLE:-
1. g—i+ y’? =sinx is non linear (Condition (i) (b) violated)
(since the degree of the dependent variable y is not equals one)

2. y"™-6y'=5sinx is linear (No condition is violated)



-y

10.

4 2
| ‘;Z+3[%] +y=x isnonlinear (Condition (i) (a) violated)
X

(since the degree of the y' is not equals one)

4
d 2’+3sin x%:cosx is linear (No Condition is violated)
X X
d*y dy : : e :
3 ax y=cosx Isnon linear (Condition (i) (b) violated)
X X

(since the differential coefficient y"*" and y' are multiplied each other)

2
C; 3’+6%:0 is non linear (Condition (ii) (a) violated)
X X

(since the differential coefficient y" and dependent variable y are
multiplied each other)

d?y
Codx?

+6%+cosy =sinx isnon linear (Condition (iii) violated)
X

(since the dependent variable y is in the transcendental form)
d*y
Codx?

(since the dependent variable y is in the transcendental form)

+e’ =tanx isnon linear (Condition (iii) violated)

2

d’y

N +e* =cosx Islinear (No condition is violated)
X

3
%+%+y2:excosx is non linear  (Condition (i)(h) violated)
X

(since the degree of the dependent variable y is not equals to one)



LEIBNITZ'S LINEAR EQUATION
The standard form of linear equation of first order commonly known as
Leibnitz's linear equation

e :—y+ P(x)y =Q(x) is called Leibnitz's linear equation
X

It can be solved by using the following steps
Step :-01
Integrating factor: e/**
Step:-02

General Solution: ye'™ =[Qe'™*dx+c.

BERNOULLI’'S EQUATION

A first order DE that can be written in the form g—i+ P(x)y =Q(X)y".

(nisreal number) where P(x)& Q(x) are functions of x only (free fromy) is

called a Bernoulli’s equation.

Note:-

(1) Itis named after the Swiss Mathematician Jacob Bernoulli (1654-1705)
who is known for his basic work in probability distribution theory.

(i) Itisclear that when n=0 or 1, the DE is linear.

(iti) Itis clear that when n>1, the DE is non-linear.

(iv) It's solution is obtained by reducing the given Bernoulli's equation to

Leibnitz's linear equation.



METHOD OF SOLUTION (WHEN n=0)

Consider the equation 3—§+ P(x)y=Q(x)y". where n=0.

e d_y+ P(x)y = Q(x)
dx

It becomes a Leibnitz's linear equation, so it can be solved by using the
following steps
Step :-01

Integrating factor: '™
Step:-02

General Solution: ye'™ =[Qe'™dx +c.
y

Problem:-01

Solved—y— y = COS X.
dx

Solution:-

The given DE is j_y_ y = cosx.----(1)
X

It is of the form g—i+ P(X)y = Q(x)----(2)

Comparing the equations (1) and (2), we have
P=-1 & Q=cosx



Integration factor

eIde _ ef—dx _ e—fdx _ e—x
General solution

ye!P* = [ Qe dx + ¢

ax

ye ™ =[cosxe *dx +¢ .+ [e* cosbxdx = aze—bz[a cosbx + bsinbx]
+

Here a=-1, b=1, substituting in the formula, we get

—X

x e .
e =————[sinx—cosx]+c
S ]
et .
ye " = 5 [sinx —cosx]+c

Which is the required solution.

Problem:-02

solve L, ¥ tanx = cosx.
xdx X

Solution:-

The given DE is 10'—erltan x = cos x.----(1)
xdx X

Let us rewrite the above equation as follows

%Jr y tan X = X COS X. (Multiply by x)

It is of the form j—i+ P(x)y = Q(x)----(2)



Comparing the equations (1), (2), we get
P =tanx, & Q =xcosx

Integration factor

g P = gltanxdx _ gloucosx™ _ ggc x
General solution

ye!P* = [Qe/™dx + ¢

ysecx = | xcos xsec xdx + ¢

ysecx = | xdx +c

2
X
yseCX:?"r‘C

Which is the required solution.

Problem :-03

Solve %+ y cot X = sin 2x.
X

Solution :-

The given DE is 3—y+ y cot X = sin 2x,----- (D
X

It is of the form j—i+ P(x)y = Q(x)----(2)

Comparing the equations (1), (2), we get
P =cotx, & Q=sin2x



Integration factor

eIde _ eIcotxdx _ eIogsinx —sinx
General solution

ye!P* = [Qe/™dx + ¢
ysin x = Jsin2xsin xdx + ¢ .+ sin AsinB = %[cos(A— B) —cos(A+ B)]
Here A=2x, B=x, substituting in the formula, we get

ysinx = I%[cos(Zx — X) —cos(2X + x)]dx + ¢

ysinx = %I[cos(x) —cos(3x)]dx + ¢

] 1 sinx sin3x sin ax
ysinx =—[—- 1+c '.'jcosaxdx:
2 2 3 a

Which is required solution.

Problem:-04

Solve %+ ycotx =4xcosecx, given that y=0 when x:%
X

Solution:-

The given DE is %+ y cot x = 4x cosecx ----- (D

It is of the form j—i+ P(x)y = Q(x) ----(2)



Given condition y(x)=0 when x:%-----(3)

Comparing the equations (1), (2), we get
P =cotx, & Q =4xcosecx

Integration factor

[ cot xdx logsin x

gl Pdx =sinx

—e —e
General solution

ye!P* = [Qe/™dx + ¢

ysin x = [4xcosecxsin xdx + ¢

ysinx = [4xdx + ¢

2
ysinx = 4%+ c=2x*+c----(4)

To find the constant C

We use the given condition (3) in (4), we get

i.e sub x:% and y=0 in equation (4), we get

0.sin(%) - 2(”72) +c

[ y=y(¥)]



Substitute the value of ¢ in equation (4), we get

2
T

Sysinx =2x2 — =,
y 2

Which is the required solution.

METHOD OF SOLUTION (WHEN n=1)

Consider the equation g—i+ P(x)y=Q(x)y". when n=1.

. d
e d—y+ P(xX)y = Q(x)y.
X
It can be solved using variable separable method.

ie j—yz—P(x)wQ(x)y
X

d
& =[Q00-PC)y
X
d7y =[Q(x)—P(x)Jdx  (Variablesy and x are separated in left and right sides respectively)
Integrate on both sides, we get
[ (ﬂ] = [[QE) - P()dx +c
y

After evaluation of integration on both sides, we get the required solution.



Problem:-01

dy

Solve ==
dx

+ Xy =4y

Solution:-

The given DE's is g—i+ Xy =4y ----- (D

The equation (1) is of the form %+ P(X)y =Q(X)y.--—--(2)
Therefore we use variable separation method as follows

dy
=2 _(4-
o (4-x)y

QX:M—MW
y

Integrate both sides, we get

| d—;’zj (4 - x)dx

X2
mgy:4x—?;+c

X2
mgy:4x—?;+c

Which is the required solution.



Problem:-02

dy > B
Solve &+(x +2)y = (tanx)y
Solution:-

The given DE's is %+(x2 +2)y = (tanx)y ----- (1)

The equation (1) is of the form %+ P(x)y = Q(X)y.
Therefore we use variable separation method as follows

gy =—(X*+2)y +(tanX)y
dx

dy _ [-x* — 2+ tan x]dx
y

Integrate both sides, we get
jﬂ:j[—x2 — 2+ tan x]dx
y

3
X
Iogy:—?—2x+sec2x+c

Which is the required solution.



METHOD OF SOLUTION (WHEN n=2,3/,4,....)
Consider the equation g—i’+ P(xX)y=Q(x)y". where n=2,3.

It is a non linear equation, but can be converted into linear equation as

follows
dy _ "
5, TPy =Q0y". 1)

Divide the equation by yn

POy =0y
y" dx

LY, _1—Q(x)

y" dx

-n dy 1-n _ R
Y T PO =Q(). (2)

Let z=y1n (replacing the variable y into z)

dz 1-n-1
=(1-n
OIy( )Y
dz
—vd
1_n =y dy

Update the values in equation(2), we have

-n

y"dy
dx

+P)Y" = Q(x).

P07 = Q)



Multiply 1-n on both sides , we get

& - n)P(X)z = - Q).
dx

% FR(M)Z=Q(x).  where P,(x) = (1-n)P(X) &Q,(x)=1-NQ(X)

This is the Leibnitz's linear equation in z.

This equation can be solved using following procedure
Integration factor

| F=g/R00

General solution

ye! R0 — [Q (x)e’ % dx + ¢

Which gives the required solution.

Problem:-1
Solve d—y+1: x*y®
dx x
Solution:-
The given DE is ay Yy x2y® - (D

dx X
It is of the form g—i+ P(X)y =Q(x)y". ----(2)

Rewrite equation (1) as follows



Ldy i} i
y o ye_yeyeye (Multply y°)

dx X
sdy 1
y‘“’d—)y(+;y5=x2 ----(3)

Let Z:yl-n :y1-6:y -5

Differentiate z with respect to y, we get

% — _5y—5—1 — _5y—6
dy

dz

22—y

Rt AL

Update the above values in equation (3), we get

y—ed_y+£y—5_xz
dx X
1 dz 1 2
———+=7=X
(-5) dx x
e )

It is of the form %+ P(X) = Q(X) -—(5)

Comparing the equations (4) and (5), we get
P(x)=-5/x and Q(x)=-5x2

Integrating factor

5
| F=elP (oo _ eIde _ @Slogx _ glogx® _ 5



General solution
ZeJP(x)dx :JQ (X)eIP(x)dde+C
X = J(-5x)x *dx + ¢

7x° = 5[ x%dx +¢

-3+1 -2

=55 _t1e=5% 4¢
-3+1 -2
s 5x7
X = +c
2
5x° 5 : 5
z :7+cx (Multiply x*)

Which is the general solution of equation (4).
The general solution of given equation (1) is obtained by replacing z by y.

Sub z=y-5, we get
3
-5

y :%+cx5 (Multiply x°)

Which is the required solution.

Problem:-2

Solve xy(1+ xyz)d—y =1
dx

Solution:-

The given DE is xy(1+ xyz)j—i =1 - (D



Rewrite equation (1) as follows
dy__ 1
dx  xy(1+ xy?)

ax = xy(L+ xy?)
dy

o _ xy + x*y®
dy

dx 2,3
2 Xy =X
dy y y

S—X— yx = yx* ---(2)
y

It is of the form j—§+ P(y)x =Q(y)x". ----(3)

Multiply equation (2) by x2, we get

X2 % _x? yX = X2 ysxz

Let z=x1n=x12=x 1

Differentiate z with respect to x, we get
% _ X—1—1 -2

dx

dz = —x?dx



Update the above values in equation (4), we get

% ey
dy
j—;+ yz =-y° (Multiply by -1)

It is of the form j_;+ P(y)z =Q(y) ----(6)

Comparing the equations (5) and (6), we get
P(y)=y and Q(y)=-y?

Integrating factor
| F=g/P 9 — gl — ey;
General solution

70! P (dy :JQ (y)eIP(y)dydy+C

bl
2

¥
=J(-y*)e2dx+c

ze
v b
ze? =[(-y*)e2dx+c
v b
ze? =-[y’%2ydy+c —(7)
% dt dt
Let t==——, —=2y =—=yd
2 dy y >2 ye



Substitute the above values in the right side of equation (7), we get

et —[(20e [ j

L
X

=—[te'dt +¢

y? — __{( )( ] (1)(%]}+c (chain rule of integration Judv =uv'-u'v'+u"v"—.... )

ze? ={-te' + Zet} +c
Sub t=7in the above equation, we get

ze 2 =(2-t)e" +c

2

y? ¥y

62 =(2-y%)e? +c¢
Which is the general solution of equation (5).
The general solution of given equation (1) is obtained by replacing z by x.

Sub z=x1, we get
L v
ez =(2-y*)e? +c
-y -y

Z=(2-y?)+ce? (Multiply on both sides e 2 )

Which is the required solution.



Problem:-3

Solve d_y+ xsin2y = x®cos’ y
dx
Solution:-
The given DE is j—y+ xsin2y = x®cos’y  ----- D
X

Rewrite equation (1) as follows

Ly

cos’y dx  cos’y

sin2y = x° [Divide the equation by cos? y]

L oy

cos’y dx  cos’y

2sinycosy = x* [sin26=2sinOcosO]

dy

sec® y—2 + X 2siny = x°
dx cos y
sec? y%+ 2xtany =x*  -------- (2

Let us rewrite further
dz ) )
z=tany, d—:sec y => dz = sec” ydy
y

Substitute the above in equation (2), we get

B o=yt e 3)
dx

It is of the form %+ P(x)z =Q(x) ----(4)



Comparing the equations (3) and (4), we get
P(x)=2x and Q(x)=x3

Integrating factor

| F= /P (0 _ gl2xix _ o

General solution

ze'® % = [Q (x)e'® “%dx +c
2e¥ =[x dx+c

z2e* =[x xdx +¢ ——(5)

Let t=x?, dt _ 2X => dr_ xdx
dx 2

Substitute the above values in the right side of equation (6), we get

26 =(t)e' (%j +C

i :ifte‘dt+c
2

<

e

2
A

26" :%{te‘ —e‘} +c

ze* :%{t ~1le' +c

>
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Sub t=x*in the above equation, we get
26" = 1(t ~1e' +c¢

2
ze* :%(x2 ~1e* +c

2 :%(xz _f)+ce™  (Multiply both sides by e ™)

Which is the general solution of equation (3).
The general solution of (1) is obtained by replacing z into y.

Sub z=tany
tany = %(xz “f)+ce™”  (Multiply both sides by e **)

Which is the required solution.



EXERCISE

Solve the following DE's

1 g x

2. % +§|Og z =§(Iog 2)° Ans.(logz)™* =1+cx  [Use logz=t and 1/t=v]

dy ,
— =ytanx—y°sec
3. g = VRN Xy’ secx

4. (CY* +xy)dx = dy
5, 2" =10Cy° +y

dy _ x*+y°
6. dx 2xy

7. X(x=y)dy +y*dy =0

dy tany .
—+—==(1 e sec
3. dx 1+x (+x) y
dy
ey —_— 1 :eX
0. ¢(%n]

dy )
tan y— +tan X = COS Yy C0OS“ X
10, tany g y

11 6y'-2y=ty* Ans.% _ 1%% cet

1 1 -10t

'~ 5y = -5ty* Ans.— =t——+ce
12, y=5y=-5y Lol



LINEAR D.E’S WITH VARIABLE COEFFICIENT

The general linear DE with variable coefficient of order ‘n’ is of the

dny dn—ly

form +
dx" Py dx"!

+...+ p,y = X Where p1p2,...,pn and X are function of x only.

LINEAR D.E’'S WITH CONSTANT COEFFICIENTS

The general linear DE with constant coefficient of order ‘n’ is of the

n n-1
form ‘; Y ta, ‘; Y . +ay=X, whereaaz,..anare real constants, and X is a
X X

function of x only.

This equation can also be written in symbolic form as follows,

The complete

(D"y+a,D"'y+..+a,y) = f(X) here D=d/dx  ¢o|ution  of equation
(D" +a,D"* +...+a,)y = f(x)

) (1) consists of two
f(D)y = f(x) -—-(1), where f(D)=D" +a,D"" +...+ 4

n parts.
) Complementary function.
1)  Particular integral.

ie., the complete solutionis given by y = vyc + vy, wherey.=C.F.,yp=P.l.

Rules for find Complementary function



Write the auxiliary equation f(m)=0[replacing D by min f(D)], and find

its roots. Depending upon the nature of the roots we have the following cases

Case 1:
If all the roots m1,my,....mn are real and different then the C.F. is,
Yy, = Ae™ + Be™ +Ce™ +....
Case 2:
If any two roots are equal say mi=m>=m then the C.F.is,
Yy, = (Ax+ B)e™.
Case 3:
If any three roots are equal say mi=my=ms=m, then the C.F. s,
y. = (AX* + Bx+c)e™.
Case 4:

If the roots are imaginary say mi=a +ig,m, =a —ip then the C.F. s,

y, =e”[Acos Bx+ Bsin Bx].

Problem :-01

Find the C.F of (D?-6D +13)y =0.
Solution:-
The given DE is (D* -6D +13)y =0----(1)

Auxiliary equation is given by m? -6m+13=0 [am? + bm + ¢ = 0]



m_6i«/36—4(13) m_—bi\/b2—4ac

2 2a

M= 6+/36-52 _ 6+/-16 _ 6+ 4i _349]

2 2 2
C.F.=e*(Acos2x + Bsin 2x)

Problem :-02

Find the C.Fof (D?+1)y=0
Solution:-

The given DE is (D? +1)y =0 ----- D

The auxiliary equation is m? +1=0

m® =-1

m =+-1

m =i [m =a+pi, a=0, p=1]

C.F =e”[Acos x + Bsinx] [C.F =e“*(Acos Bx + Bsin BX)]

C.F = Acosx +Bsinx

Problem :-03
Find the C.Fof (D®*+D?+4D+4)y=0
Solution:-

The given DE is (D® + D? +4D + 4)y =0 ----- D



The auxiliary equation is m* + m? +4m+4=0

We use the following trial and error method to find the roots

1 1 4 4
-1 |0 -1 0 -4
1 0 4 0

I.e (m-(-1))(m2+0m+4)=0
i.e (m+1)(m2+4)=0
m+1=0 or m2+4=0

m=-1 or m2=-4

m=-1or m=+2i

C.F=C1e*+e™[Coc0s2x+C3sin2x]

Note:-
The trial and error method is applicable only if at least one root of the

equation is real.

Problem :-04
Find the C.Fof (D*-4D?+4)y=0

Solution:-



The given DE is (D* -4D? + 4)y =0 ----- (D

The auxiliary equation is m* —4m? +4=0

For this problem the trial and error method not applicable (Since all the roots
are complex), So we find the root by rearranging the equation as follows
(M?)2-4m?+4=0

(n)2-4n+4=0, where n=m?2

n2-4n+4=0 [a n2+bn+c=0]
. —(—4) £ /(-4)* - 4()(4) G_ht Vb? - 4ac
- 2(1) B 2a
n:4i\/6:4i0:2+0
2 2
n=2+0,2-0
n=22
m? =2, m? =2, [m? =n]
m=+/2, m=+/2

Hence the four roots are m=+/2,-2,v2,-2

C.F = (C,+C,x)e" + (C, + C,x)e

Problem :-05
Find the C.Fof (D*+4)y=0

Solution:-



The given DE is (D* +4)y =0 -----

The auxiliary equationis m* +4=0

For this problem the trial and error method not applicable (Since all the roots

are complex), So we find the root by rearranging the equation as follows

(m2)2+4=0

(n)?+4=0, where n=m?
n2+4n+4-4n=0

(n+2)2-4n=0

(M2+2)2-22 m2=0
(Mm2+2)2-(2m)2=0
(M2+2-2m)(m2+2+2m)=0
m2-2m+2=0 or m2+2m+2=0

To find the roots of m2-2m+2=0

_—(-2£J(-2) -41)(2)

2(1)

o _24-8 _2+V4 _ 2:2i
2 2 2

m

m=1+i
To find the roots of m2+2m+2=0

_-£4(-2° -40)(2)

2(1)

m

[ (a+b)2=a2+2ab+b?]

[a2-b2=(a-b)(a+b)]

[m _ —b ++/b? —4acJ

2a

[m _ —b ++/b? —4ac]

2a



o 2+4-8 244 —2+2i

m=-1+i

Hence the four roots are

m=1+i, —1+i, [For 1+i, a=1, f=1&-1+i, a=-1, p=1]
C.F = e™[C,cosx+C,sinx]+e™[C, cosx +C, sinx]

EXERCISE
Find the C.F of the following DE's
1. (D*-2)*y=0.
2. (D*-1y=0.
2
. d’x +5%+ 6x=0
dt> dt
2
4, d 2X+6%+9X:0
dt dt
5.y"+3y'+2y=0

6.y"+y'+y=0
7.(D?+4)2y=0

8. (D-3)*y=0

9. (D+8)*y=0

10. 4y""+4y"+y'=0
11.(D3+1)y=0

12. (D2+1)2(D-1)y=0



13.(4D*-8D3-7D2+11D+6)y=0
14. (D3-3D%+3D-1) y=0

15. 4y""+4y"+y'=0

16. (D*+8D2 +16)y=0



Rules for finding particular Integral

Consider the general linear DE with constant coefficient of order ‘n’

n n-1
‘; Y ia, 3 J . +a,y=X,where aiaz,..an are real constants, and X is a
X X

function of x only.
This equation can also be written in symbolic form as follows,

f(D)y = X (1), where f(D)=D"+a,D"* +...+a

The particular integral is obtained as follows

pI=_1 x- L X
f(D) D"+aD"" +..+4a

n

Note:-

Formulae £ x =[xdx  and 1 x = [ [ xdxdx etc,
D D

TYPE: 01
If X =e*,thentheP.l.is
1

Pl.= me""* [ Factorize the denominator ¢(D) in to linear factors]
Pl = Leax, proviedg¢(a) = 0.
¢(a)

If ¢(a)=0. then multiply by x and differentiate the denominator with

respect D, and replace D by a.



Pl = x 5 ia) e™, proviedg¢'(a) = 0.

Continue this procedure until we get the required solution.

Problem:-01
2
Solve d—¥—4y =6e™".
dx

Solution:-

d’y
X2

The given DE is

Let write the symbolic form of equation (1) as follows
D?y—4y=6e*. where D=—.

(D* -4)y=6e - (2

The complete solution of equation (2) is given by
y=CF+PI - 3)

Tofind CF

Auxiliary equationis m?>-4=0

m? =4

m=+/4

m==+2

C.F = Ae** + Be ™™



TofindP.I

Pl—— L - 21 6e>
f(D)" D’-4

Let us write the denominator in linear factor form D2-22=(D-2)(D+2)

Pl—f— T o
(D-2)(D+2)
1 5x
P.I.=6me [ case I, replace D by 5 ]
- +
Pl =0 g =25
21 7

Substituting the values of C.F and P.l in equation (3), we get
y=Ae” +Be ™ +§e5X

Which is the required solution.

Problem:-02

Find the particular integral of y"-3y'+2y =e*—e**,
Solution:-

The given equationis y"-3y'+2y=e¢* —e?. ----- D

Let us rewrite the equation (1) in symbolic form as follows
D?y—-3Dy + 2y =¢* —e %", where D=—.

(D*-3D+2)y=¢€*—-e?>*. - (2



TofindP.I
1 1

P.l.= X =— (" —e )
f (D) D?-3D+2
1 1 ,
P.l.= e* - e - 3
D?-3D+2 D?2-3D+2 (3)

Let write the denominator in linear factorize form
D2-3D+2=D2-D-2D+2

D2-3D+2=D(D-1)-2(D-1)

D2-3D+2=(D-2)(D-1)

Now

1 x 1 x

— ' =———¢ [ Case I, replace D by 1, denominator is zero]
(D-1)(D-2) 1-1D1-2)

1 x 1 x

5 et = e [ Case I, replace D by 1, denominator is zero]
D?-3D+2 (D —1)(-1)

1 X 1
=— e

€ [ Case I, replace D by 1, denominator is zero]
D?-3D+2 (D -1)

If denominator becomes zero, multiply numerator by x and

differentiate denominator with respect to D and then replace D by 1 again.

1 1 d
& = —x——¢ w—(D-1)=1-0=1
D?-3D+2 1-0 [ dD( ) ]

1
—————e =—xe* - 4
D?-3D+2 )



1 o _ 1
(D-)(D-2)  (-2-1)(-2-2)

1 -2X 1 -2X
—————e " =—-¢ ---(5
D?-3D+2 12 ©)

Substitute the equation (4), (5) in (3), we get
Plz—xe" — g
12

Which is the required answer.

Problem -03

Find the particular integral of (D-1)?y =sinh 2x.

Solution:

The given DE is (D -1)*y =sinh 2x. ----- (1), itis in symbolic form only.

To find P.I

Plo_1 x-
f(D) " (D-1)?

sinh 2x

Here the denominator is already in linear factor form

2x_—2x
1 e e [sinh2x = (£

1= (D-1?° 2

SIS SN N e 2
' _2(D—1)2e 2(D—1)ze (2)

e [ Case I, replace D by -2, denominator is non zero]



Now

1 2x 1 2x

e = e Case I, replace D by 2, denominator non zero
D12 (2-17 [ P Y )

1 X X
oyt ¢ 7T )
%e‘“ = % 2 [ Case I, replace D by -2, denominator non zero]
(D-1) (-2-1)
-2X
%e—zx e — (4)
(D-1) 9

Substitute the equations (3), (4) in (2), we get

-2X
pl=len_1e7
2
—2X
P.|:1[e2X -e—J
2 9
Problem -04

Find the particular integral of (D +2)(D -1)?y = e + 2sinh x.
Solution:
The given DE is (D +2)(D -1)%*y =e® + 2sinh x.----- D

It is already in symbolic form.

1, 1 PO
P.I= ) X = ST (e +2sinh x.)

Here the denominator is already in linear factor form



1= L e + -
(D +2)(D —1)? (D +2)(D —1)?

1 X_ —X . X_ -X
P.I= e L Z[e ¢ } [smhx:e 2e ]

2sinh x.

T(D+2)D-17 x2@-17 | 2
P.Iz 1 - e—2X + 1 ] (ex _e—X)
(D+2)(D-1) (D+2)(D-1)
— 1 —2X 1 X 1 -X
A= —e —e' - ——e )
(D+2)(D-1) (D+2)(D-1) (D+2)(D-1)
Now
1 _2x 1 -2X

e = e
(D +2)(D-1)? (D +2)(D-1)?

1 o2 _ 1
(D+2)(D-1?%  (=2+2)(-2-1)>

e ?* [ Case |, replace D by -2, denominator is zero]

1 -2X 1 -2X
g =—" ¢
(D +2)(D-1)* 9(D +2)

[ Case |, replace D by -2, denominator is zero]

If denominator becomes zero, multiply by x and differentiate

denominator with respect to D and then replace D by -2 again.

: aly 1o [ L (D+2)=1+0=1
(D +2)(D-1)? 9" (1+0) dD

1 o2t _ xe ¥
(D +2)(D-1)° °s (3

1 ) 1 .

;€ = e [ Case I, replace D by 1, denominator is zero]
(D+2)(D-1) 1+2)(@-1



1 X 1 X
e = e
(D+2)(D-1?  3(D-1)°

[ Case I, replace D by 1, denominator is zero]

If denominator becomes zero, multiply by x and differentiate

denominator with respect to D and then replace D by 1 again.

1 L1 1 ox o1,
et =x——e" == e
(D+2)(D-1? 3 (2D-2) 6(D-1)

d d
+—(D-1)?*=—(D*-2D+1)=2D-2+0=2D-2
[ 55 (D-1 = (D" ~2D+1) ‘ ]

! ~et = ELeX [ Case I, replace D by 1 again, denominator is zero]
(D +2)(D-1) 6 (1-1)

If denominator becomes zero, multiply by x and differentiate

denominator with respect to D and then replace D by 1 again.

1 « X 1
e’ =—.X e
(D +2)(D -1)? 6 (@-0)

9y Cno1o0o
[+ o5 (@ ~D=1-0=1]

1 o _ x’e*
(D+2)D-* 6 T (4)
1 y 1 x

e = e
(D +2)(D -1)? (-1+2)(-1-1)?
[ Case I, replace D by -1 again, denominator is non zero]

1 L 1 ~x 1

o0-1° "ot~ )



Substitute the equations (3), (4) and (5) in (2), we get

xe?*  x%* 1

—_ + .
P.I="9 6 4

Which is the required answer.

Problem -04

Solve (D -1)°y=e*

Solution:

ThegivenDEis (D -1°y=¢*. - (D
It is already in symbolic form

Its complete solution is given by y=C.F+P.I------ 2
Tofind CF

The auxiliary equation is (m-1)3=0
(m-1)(m-1)(m-1)=0

m-1=0 or m-1=0 or m-1=0
m=1,1,1 (Thrice)

CF=(A+Bx+cx?)ex e 3)
Tofind P.I
pl=_1 ! X [ Case I, replace D by 1, denominator is zero]

= = e
f(D) (D-1)°



=1
R

X

e

If denominator becomes zero, multiply by x and differentiate

denominator with respect to D and then replace D by 1 again.

1 d
P.1=x. e w—(D -1)°=3(D-1)*'(1-0)=3(D-1?
3D 1) [ OID( )" =3(D-1)""(1-0)=3(D-1)7]
A= gﬁex [ Case |, replace D by 1 again, denominator is zero]

If denominator becomes zero, multiply by x and differentiate

denominator with respect to D and then replace D by 1 again.

X 1 < d _
P.I:§.x. 2(D—1)e [-.-d—D(D -1)? =2(D-1)*"(1-0)=2(D-1)]
P |= X 1 . . .
= 1 e [ Case |, replace D by 1 again, denominator is zero]

If denominator becomes zero, multiply by x and differentiate

denominator with respect to D and then replace D by 1 again.

X 1, . d N
P'I_?X'Ee [+ o5 - =1-0=1]

_ x%e*
i — 4)




Substitute the equation (3) and (4) in (2), we get

_ x’e*
y=(A+Bx+cx?)ex+ e

Which is the required answer.

EXERCISE

Solve the following DE's
1. (D*-2D+1)y=coshx..
2. (D* -4)y =10e** —3e™..
yHy'+y=(1-¢e")°.

. (D-2)*y =8e*.
y"-6y'+9y = 6e> —7e**.
y"—y'=2e".

y'+2y'+y =e*.

y'—y=e".

© © N o g &~ W

y"—6y'+ 25y =e*.



Type 2:

If X =sinax (or) cosax,,thentheP.l.is

Pl = L sinax (or) cosax
f(D)

Replace D2 (only even powers of D) by—a2 in f(D) provided f(-a*)=0.

Note:-

1. In this type 2, we can replace only the following value D2, D4, D6 .,.... etc.
I.e Even powers of D can only be replaced by a number, but not odd D. If
there are any odd power of D in the denominator make it as even
power by suitable multiplication of linear factor in denominator and
numerator, then substitute the even powers of D etc.,

2. In case of denominator zero, multiply x in the numerator and
differentiate the function f(D) in the denominator with respect to D.

Again substitute the values of event powers of D.



Problem:01

Solve (D? +3D +2)y =sin3xcos 2x

Solution:-

The given DE is (D? +3D +2)y = sin3xcos2x ----- D
It is in symbolic form.

The complete solution of (1) is given by y=C.F+P.I-----(2)

Tofind C.F
Auxiliary equation is m2+3m+2=0
m= —(3) £ (3)* —4(1)(2) M —b ++/b% —4ac
2(1) - 2a
e —3£0-8 _-3x1
2 2
_—-3+1 -3-1
= or
2 2
m=-1 or -2
C.F.= Ae " +Be™
ToFind P.1
_ 1 1 . . 1 . .
P.l= X =— sin3xcos 2x ( sin Acos B = =[sin(A+ B) + sin(A— B)]]
f(D) D?+3D+2 2
1 1 . .
Pl=———~[sin(3x + 2x) +sin(3x — 2x)]

(D*+3D+2) 2



1 sin5x+1 inx

1

Pl=2—n T
2D°+3D+2 2D°+3D+2
1

[ Sin5x +

sin x]
2 3D-23 3D+1

[ CASE-Il D* = —(5)* = 25, Second D = —(1)* = -1]

1.3D+23 . 3D-1 .
A= —[——-=sinbx+———sinx]
2 9D -529 9D° -1
1.3D+23 . 3aD-1 .
=—[ sin5x + sin x]
2 —754 -10
_i[SDsin5x+233in5x 3Dsinx—sinx]
2 —754 -10
_1[15c055x+23sin5x N 3cosx—sin x]
2 —754 -10

~y=CF.+P.l.



Problem:-02

2.50lve: (D> -4D-5)y =cosx+e*
soln:

AEm’-4m-5=0

m=-15.

C.F.= Ae”* +Be™
P.I.=ﬁD_5(cosx+e‘x)

-X

=— ! COSX+— e
(D -4D-5) D°-4D-5
—(4D -6) X

= ———-C0SX+_——¢&
16D° -36 2D -4

_ 2sinx—3c0s X —fe‘x

-26
~y=C.F.+P.l.

-X



__ 1 sinx D7 =-(1)° =1

D2

1 .
= sin X
-1+1

=X sinx D?>=-1

2D+0

:ix3499nx D?=-1
2 DD

EXERCISE

1Sowe(D3+2D2+EDy:SMX+e45



Type 3

If f(x)=a,x"+ax""+..+a,,wherea,x" +ax" " +...+a, iSapure algebraic

1 n n-1
function then, P.l.= W(aox +ax" +..+a)
=¢(D) "(ax" +ax"" +..+a,).
Expand ¢(D)* by using Binomial theorem in ascending powers of D and

then operator on a x"+ax"*+...+a,.



Problem:-01

1.Solve: (D®-3D*-6D +8)y = x.

soln:
AE. m®-3m’-6m+8=0
sm=1-2,4
-.C.F.= Ae* + Be ® +Ce¥
Pl .= 3 3 X
(D*-3D?-6D +8)
1
B D°—3D 6D
8[1+(f)]
1 D®*-3D?-6D..,
=+(— X
8[ ( 3 (%)
1 D®*-3D?-6D
= [l-(———)(x
8[ ( 3 )1(X)
1 6
=—|X—(——
8[ (8)]
1 3
=Z(X+—=
503

~y=C.F.+P.l.



Problem:-02

2.Solve: (D®-D*-6D)y = x* +1.
soln:
AE..m*-3m*-6m=0

m=0,-2,3.

-.C.F.= Ae™ + Be ?* + Ce*

P.l

EXERCISE

1 2
.= X +1
(D3—3D2—6D)( )

1

5o (x*+1)

6D

L - 2P ey

—6D[L—(

)]

-6D 6
1 D -D D?

_DZ 2
_6D[1+( 5 )+ ( 5 )" +..](X° +1)

1.Solve: (D? +4)y = x* +cos® x
2.50lve: (D? —4D +3)y = cOS 2X + 2X*

Type-IV



Iff (x) =e®x, where X is sinax(or)cosax(or)x" then Pl=—L e¥yxoe*_ 1 x
¢(D) ¢(D+a)
Here ¢(D1 2 X can be evaluate by using any one of the first three types.
+
Problem:-01

Find the P.l.of (D°—4D)y=xe’

Soln:

1 X
— Xe
D?-4D
. 1
€ 2

(D+1)°-4(D+1))
. 1
T E— X
D?-2D-3
1
D?2-2D
3
D?2-2D
3

P.l.=

X(- Re placeD — D +1)

X

—31—(

=€

X
)]

=f—;[1—< (0

2D

e* D? -
=_—3[1+( 3 )] (%)

e* 2
= _—3[X+ (—5)]

e 2
=——(X——
3 ( 3)

Problem:02



(D*+4D+3)y =e*sinx

Soln:
AEm?>+4m+3=0
m=-1,-3

CF.= Ae*+Be™
P

D?+4D+3

=e 5 L sinx(". Re placeD — D -1)
(D-1)°+4(D-1)+3

=e‘X2;sinx
D°+2D

~ 1
=e sinx

2D-1
__x 2D+1

4D* -1

(sinx)

X

:8—5[2 CosS X +Sin x]

~y=C.F.+P.l.

EXERCISE
Solve: (D?*—4D +13)y =e* cos3x + (X* + X +9)



Type -V

To find P.I. when f(X)= x" sin ax(or)x" cos ax.

x" sinax(or)x" cos ax

1
f(D)

1
now,
f(D)

x"(cosax +isin ax)

- _ 1 naiax _ 4iax 1 Xn
(D) f(D +ia)

n

1 na; iax
", x"sinax = |.P.ofe®™ ——————x
f (D) f(D+ia)

. 1
L x" cosax = R.P.ofe’™ —————x"
f (D) f (D +ia)




Problem:-01

Solve: (D*-2D+1)y = xsin x.

Soln::
AEm*-2m+1=0
m=11
C.F.=e*(Ax+B)
P.I.=2;xsinx
D°-2D+1
ix 1
=|.P.ofe = - X
(D+1)"-2(D+i)+1
= 1.P.ofe™ — ! : - X
D°-2(1-i)D-2i
:l.P.OfeiX Dzl 2(1 )D X
. -2(1-i
2 ()
i
. D?-2(1-i)D,.,
=I.Pofe" —[1-(—————)] 'x
2[ ( o )
- 2_ _.
_ 1 pofe Ly (B2=23=DDy,
2 2i

- |.P.ofe“%[x+i +1]

— I.P.of (cos X +sin x)%[x+i +1]

1 1 sin X
=—(xcos X)+—(cosX) ———
2( ) 2( ) 5

~y=C.F.+P.l.
EXERCISE

(D*—1)y = Xsin3x +COS X.

LINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS
[CAUCHY’S HOMOENEOUS EQUATION]



Any equation of the form,

n-2

y
dx"?

d"y anad n_ly
+ax
% dx"*

n-2
e +a,X

Xn

wtay=~1(x),—> Q0

where ajz,az,....,an are constants and f(x) is a function of x is called a linear DE
with variable coefficients. Equation(1) can be reduce to a linear DE with
constant coefficients by putting the substitution.

x=e’(or)z =log x
put,

2

Y by @Y Sy @)
dx dx

> =

x3% =D'(D'-1)(D'-2)y — (4)
dx

Sub equation 2,3,4 ...in equation (1), we get a DE with constant

coefficients and can be solved by any one of the known methods.

Problem:-01
Reduce the equation (x*D?+xD +1)y =logx into an ordinary differential

equation with constant co- efficient.

Solution:



(x*D? +xD +1)y = log x

take, x =e*(or)log x = z

xD = D", x’D* = D'(D'-1)where, D' =di
z

(D'(D-1)+D+1)y=1z

(D*+1)y =1z
which is the required ordinary differential equation with constant co

efficient.

Problem:-02

Transform the equation x’y"+xy'=x into a linear differential equation
with constant co-efficient.
Solution:-

(xX*’D* + xD)y = x

take,x =e’(or)log x = z

xD = D" x’D* = D'(D'-1)where, D' =%
(D'(D'-1)+D")y=¢
(D*)y=¢’

Which is the required linear Which is the required differential equation with

constant co-efficient.

Problem:-03

Solve: (x*D?+4xD+2)y=0



Soln:
put,x =e*,z =log x

XD =D',x*D* = D'(D'—l),D'=di
z

[D(D'-1)+4D'+2]y =0
(D?+3D'+2)y=0
AEm*+3m+2=0
m=-1-2
y=Ae*+Be’, z=logx

Problem:-04

Solve: (x*D? —xD-2)y = x* log X



Soln:
put,x =e*,z =log x
xD=D',x2D2=D'(D'—l),D':di
Z
[D'(D'-1)-D'-2]y =e*z
(D?-2D'-2)y =e*z
AEm?-2m-2=0
m:li\@
C.F.= Aet®2 | Bel-d:
Z;Zezz
D?-2D'-2
2z 1 7
(D'+2)*-2(D'+2)-2
2z 1 7
D?+2D'-2
’ D1‘2 2D ‘
+
—2[1—(7)]
g2 D"?+2D"
1-(———=) 2
2[ ( > )]
g2 D?+2D'
1+(———)] z
2[ ( > )]

2z

2

2z

2
Y=Y+ Y.

[z+1]]

[log x+1]

Problem:05

Solve: (x*D? -3xD +5)y = x*sin(log x)



Soln:

put,x=e*,z =log x

xD =D',x’D* = D'(D*-1), D'Zdi

z

[D'(D'-1)—3D'+5]y = e*sinz

(D?-4D'=5)y =e*sinz

AEm*—4m+5=0

m=2+i

C.F.=e*[Acosz + Bsinz]

P.I.:Z;ezzsinz
D2-4D'+5

22 1 -

sinz

(D'+2)*-4(D'+2)+5

=" ———sinz
+1
=e” sinz
-1+1
z .
=e’’ ——sinz
2D

7e*
) (—cos z)wherez = log x

Y=Y+ Yo
EXERCISE
1.Solve: (xX*D*-xD+1)y = (Ioﬁ)z.
X

2. Solve: (x*D?-3xD +4)y = x? cos x(log x).
Exercise

Solve the following DE's

1. (ev+1)cos x dx+eY sin x dy=0 Ans. sin x (e¥+1)=c
2. y'=exey Ans. ey+ex+c=0
3. y'=1+x+y+xy Ans.log(1+y)=x+x2/2+c

EXERCISE



Solve the following DE's
1. d—y—sin 2X = yCot X.
dx

2. (L+ x3)ﬂ+3x2y =sin® x.
dx

3. dy +y=X Ans, y=x-1+ce™
dx

4, % _X 2y? Ans.ﬁzy2+c
dy vy y



Series Solution and Special Functions

INTRODUCTION

Generally the solutions of ordinary differential equations are obtainable in explicit form called a
closed form of the solution. However, many differential equations arising in physical problems are
linear but have variable coefficients and do not permit a general solution in terms of known functions.
For such equations, it is easier to find a solution in the form of an infinite convergent series called
power series solution. The series solution of certain differential equations give rise to special functions
such as Bessel’s functions, Legendre’s polynomials, Lagurre’s polynomial, Hermite’s polynomial,
Chebyshev polynomials. Strum-Liovelle problem based on orthogonality of functions is also included
which shows that Bessel’s, Legendre’s and other equations can be determined from a common point
of view.

POWER SERIES SOLUTION OF DIFFERENTIAL EQUATIONS

Consider the differential equation
d? d
Po() 5+ PL () + Py (x) y = 0 ()

where P;'s are polynomials in x.

If Po(a) # O, then x = a is called an ordinary point of (1), otherwise a singular point. Ordinary
point is also called a regular point of the equation.

A singular point x = a of (1) is called regular singular point if, (1) can be put in the form

& Ql(x) Q QZ(x) _ 0
dx?  (x—a)dx = (x—a)? Y= (2)

provided Q1 (x) and Q2(x) both possess derivatives of all orders in the neighborhood of a.
A singular point which is not regular is called an irregular singular point.
Note: The power series method sometimes fails to yield a solution
e.g. X2y +xy +y=0 e

dividing by x2throughout, X2y +xy +y =0 ..(4)
1 1
Here neither of the terms Pi(x) = x and P, (x) = x2 is defined at x = 0, so we cannot find a
power series representation for P1(x) or P2 (x) that converges in an open interval containing
x =0

Theorem I: If x = a is an ordinary point of the differential equation (1), i.e. Po(@) # O, then
series solution of (1) can be found as:

y=ata(x-a)+tax—a’+-- ... (5)
dy d%y

Calculate the derivatives ax’a4x? from (5), and substitute the values of y and its derivatives in
differential equation (1).



The values of the constants @2.@3, @4, .- are obtained by equating to zero the coefficients of
various powers of x.

Putting the values of these constants in the solution (5), the desired power series solution of (1) is
obtained with @ @1 as its arbitrary constants.

Theorem I1: When x = a is a regular singularity of (1) at least one of the solutions can be expressed
as,
y=(x—a)"[ag+ai(x — a) + ap(x —a)? + - | ...(6)

Theorem 111

The series (5) and (6) are convergent at every point within the circle of convergence at a. A solution
in series will be valid only if the series is convergent.

Ly _ xy =20
Example 1: Solve in series the equation dx? y=9
Solution: Given differential equation is
d%y _
a2 Xy =0 ()

Po@) S+ P2 + Py () y = 0
Here Po(x) =1 50 Po(0) = 1 i.e. x = 0is the ordinary point of the differential equation (1).
Let the solution of differential equation (1) be
y =ay+ a1 x + a;x% + azx® + ax* + agx® + - .. (2
To find a,

Differentiating (2) w.r.t.x,

dy
L = ) + 2ax + 3a3x% + 4a,x° + Sasxt + - .. (3)

Again differentiating w.r.t x

d¥y _ 2 3
-5 = 2ay + 6azx + 12a,x° + 20asx” + - .. (4

Substitute values of y from (2) and its derivative from (4) in the differential equation (1), we get
(2a; + 6azx + 12a4x? + 20asx® + )

—x(ag + ayx + ayx? + azx® + apxt +agx® + ) =0
=>2a, + (6as — ag)x + (12a, — ay)x? + (20as — ay)x3 + - =0
2a; + (6az — ag)x + (12a4 — ay)x* + (20a5 — az)x® + -+ = 040x+0x*+0X+0X"+0X+.......
Equating each of the coefficients to zero, we obtain the identities,

2a2 = 0' 6(13 - Qpy = 0' 12&4 - qq = 0,20(15 -y = 0

_ 1 1 1 _
ay —0, az —gao, ay ay, as —5@2 =0

which further gives T 12



Ap—1

Generalizing the results, Int2 = G2yt ... (5)
Putting 7 = 4,5,6 ...in (5), we get

1 1 1
%= omB T ©oe) 10 T 10 20

1 1 1
T oM T e ™ T st

az
ag — 0.
Using the values of the constants in (2), the general solution of differential equation (1) becomes

y=ag (1 +éx3+%x6+~--)+a1 (x+%x4+$x7+---)_

Example 2:
ASSIGNMENT

Solve the following differential equations in series
1.

d?y dy _
m-i“?(fa'*“y—o.
2. 2
d*y
m+xy=0.
3. 2
4y & =
1 x)de xdx+4y—0.
4, &y
; m+y=0, given y(0) = 0.
(1 -x2)y"+ 2y = 0, given y(0) = 4, y'(0) = 5
y y g y y
ANSWERS
1 x x*t x6 x3 %5 x?
y"a0(1"7+ﬁ~2.4.6+'")+a1(x‘?+§_3.5.7+'")
2. 1 5, 14 ¢ 147 g
yzao(l——ax X X )
12, 27
+a1(x—zx +7X +)
3. 2 4 6 2 .8
- 2 _x_ a3 20 53 x|
y = ap(1 2x)+a1x(1 2 8 6 8 86 8 )
4, 3 %5
y:ao(x—a-{-a—-")
5. 5 7
y=4+5x—dx? =23~ -

FROBENIUS METHOD



This method is hamed after a German mathematician F.G. Frobenius (1849 — 1917) who is known for
his contributions to the theory of matrices and groups. This method is employed to find the power

series solution of the differential equation
d? d
Po(x)ﬁ+P1(x)ﬁ+P2(x)y=0 ()
whenx = 0 is the regular singularity.

Working Procedure

(i) Let ¥ =xM(ay + a1x + ayx? + azx® + -+ a,x™ + ) )

be the solution of the differential equation (1), where m is some real or complex number.

dy d%y
(i) Substitute in (1) the values of ¥ 4x * @x? obtained by differentiating (2).

(iii) Find the indicial equation (a quadratic equation) by equating to zero the coefficient of the
lowest degree term in x.

(iv) Find the values of @1, @z, a3, ***in terms of o by equating to zero the coefficients of
other powers of x.

(V) Find the roots M1, M3(say) of the indicial equation. The complete solution depends on the
nature of roots of the indicial equation.

Case I: Roots M1, Mzare distinct and do not differ by an integer

In this case, the differential equation (1) has two linearly independent solutions of the following
forms:

y; = x™(ag + a1x + apx? + azxd + )

yy = x™1(bg + byx + byx? + b3x® + )
The complete solution of the differential equation is given by
y=ayr+ey.

d?y ., dy _
Example 3: Solve e T2 ty=0

d?y | o dy _
Solution: Given ** gz T2, ty=0 . ()
d? d
Po(¥) gz + P G+ P2(x) y = 0
Po(X)=4x, Po(0)=0,

Here x = 0is a singular point,

Let its solution be



y = agx™ + a;x™ M + a;x™ T + agx™ S + a4+ L .. )

From equation (2)

o magx™ ! + (m+ Da;x™ + (m + 2)ax™ !

dx
+(m+3azx™? + . .. (3)
2
% =m(m — Dagx™ 2 + (m+ Dm a;x™ 1
+(m+2)(m+ Dax™ + ... ... .. (4

Putting the above values in equation (1), we get

dx[m(m — Dagx™ 2+ (m+ Dmayx™ 1+ (m+2)(m + Dax™ + ......]

2[magx™ 1+ (m+ Dax™ + (m + 2)ax™ ! + (m + 3azx™ 2 + ... ]

+Hagx™ + agx™ + apx™ T + azx™ T F g™t + L 1=0
Equating the coefficients of x™~1 equal to zero
dm(m — Dag + 2may =0
—ag(4m? —4m +2m) =0
Because ao # 0
= 4m? —-2m =10
m=0,

o | =

i.e.

- The solution of the indicial equation is ™1 = 0 and m2 =3
Here, the roots are real, distinct and do not differ by an integer.

Its solutionis ¥ = ¢1Y1 + ©2)> ... (6)
On equating coefficients of x™ , we get

4(m+ Dmay + 2(m + Day + or

2Zim+DC@m+ Da; = —ay

— —dg
N N = e m) ()

On equating coefficients of x™ | we get

Likewise, 4m+2)(m+ Da; +2(m+2)a, +a; =0
m+2)dm+4+ 2)ay = —aqor

2(m+2)2m+3)a, = —q4
—ay _ g

=BT Jonrn@Emt3) | ZZ(mt2)miD(Emi1)(Zm+3) .. (8)

m+2

On equating coefficients of x™“, we get

)a3+a2 =0
4(m+3)Y(m+2)az +2(m+3 5

(m+3)(4m+8+2az=—ay



—ag

2(m +3)(2m + 5)az = 22(m+2)(m+1)(2m+1)(2m+3)

—ag

as

- = 23(m+3)(m+2)(m+1)2m+1)(2m+3)(2m+5) and so on.

Thus, for m = 0, in (2), we get

y(m=0) =y1 = {xm (ao + ax + a2x2 + ... )]m=0

1 x2 1 x3 ]

1 x
= [1 211t 22103 Paziass T o

_ (E) (=) () _
_ao[l— TR el SR = ay cosVx . a0)
-1
Likewise for ™ = 2, in (2), we get
1 1 x 1 x? 1 %8
Y(ng) = Yo = AgX? [1 - 2—;7 + 2—%%2‘4 - 2_3%%%.2.4.6 &
_ L ) s
=q [\/9? TR St e = qg sinvx e

Hence, on substituting the values of Y1 and Yzin equation (3), we get solution as:

V=Vt 6y, = (C1 cosvx + C; sin\/J—c)_

Example 4: Find the series solution of the equation
2d’y _ _dy AV
2x ——xa+(1—x Jy=0

dx?
OR
2%y dy — 2y =
Solve the equation 2% @z ~ ¥ T (1-x%)y=0 ;. power series.
2dly _  dy )y =
Solution: Given 2% gz~ ¥t —x)y=0

Let its solution be
= QX'+ aq X 1+ax 2+CZX 3+......
y 0 1 2 3

So that

dx
And

d? - -
= =m(m— Dagx™ 2 + (m+ Dm)ax™ 4 (m 4 2)(m + 1)apa™ +

dy  d%y

On substituting the values of Y* @x* 7=¢ in the given equation, we get

D magx™ 1 + (m+ Dayx™ + (m + Z)azxm+1+(m + Dagx™ 2 +

. (9)

. (D)

. (2



2xmm = Dagx™ 2 + (m + D(max™ L + (m + 2)(m + Dax™ + ... ... ]
—x[magx™ 1+ (m + Da;x™ + (m + 2)ax™ ™ + (m + 3)agx™ 2 +
+(1 = xP)[apx™ + a x™ + apx™ T 4 azx™ T+ L 1=
ie [2m(m — Dapgx™ + 2(m + Dma,x™ ™ + 2(m + 2)(m + Dax™ M + ... ]
—[magx™ + (m + Dayx™ T + (m + Dax™? + .. ... ]
+[(agx™ + a;x™ M + apx™ T + L ) = (apx™ " + a;x™ T + L )N =0 ...(5

On equating the coefficients of lowest power of x (i.e. x™) equal to zero on both sides,
2m(m — Dag —mayg+ag =0 ... (6)

= ag(Zm—-1)(m-1)=0
1
= Either @ #0 or M=173

y=C1y1tC2Y2
Now equating the coefficients of x™*! equal to zero,

Which 2(m+1Dma; — (m+1)a; +a; =0 implies either @1 =0 or m=0, but
= aym(Zm—-1)=0
m =+ 0,

ar =0 .. (7

On comparing the coefficients of x™*?2,
2m+2)(m+Day —(m+2)ay + (ap —ag) =0

=
= [@2m? +6m+4) — (m+ Dla, = q
_ a9
N 2 = D m13), ... (8

Likewise, on comparing the coefficients of x™+3,
2m+3)(m+2)az—(m+3az+a3—a; =0
= [2m+3)(m+2)az — (m+3)+ 1]az = a4
= a3 =0 (since a; = 0) .. (9)
Further, coefficients of x™*4,
2im+4)(m+3)ay—(m+Vag+a,—a; =0

= Rm+4)(m+3)-m+4)+a] =ay
@m? +13m + 2Da, = a,
- az
= U = meneEm+n  andsoon ... ... (10)
Ao = —ao = a—O
Now for m = 1, 27 1+)21+43) 25 from (8) ... (12)
_ % _ 4o
A4 =307 2540 from (10) .. (12)
1 az_ ...d(;.l _3%_& ......
— - /1 /3 -
For™ =73, Gr)(23+3) Gl 23 ... (13)
A = ay . ﬂ 1 _ agp
7T m+DEm+7) T 23 (%-;_3)@-;.7) T 2347 .. (14)



Thus Y1 = W=t = apx™ + ayx™ 4 a;x™t2 4 gzx™m I 4

xZ x4= .X'6
= GoX [1 t o5 T o480 T 2as0613 T ]
1 x2 e %6
Y2 = (y)m=% = Gox? [1 Yot osar Y osasoa b oo ]

Hence y = Ciyp + Gy,

Case I1: Roots M1, Mzare equal, i.e. My = My,

In this case, one of the linearly independent solutions Y1 is obtained by substituting 7 = M and
the second solution is obtained as

72 = (),

Thus the complete solution is given by

y=c6yt+¢ (a—y)mzml_

am

d?y  dy _
Example 5: Solve ¥axz T ax ~ Y = 0

d’y dy

Solution: Given *@ztax Y =0 ()

Let its solution be

y= agx™ + ay;x™ 1 + a,x™? +

...... . Q)

Z—x =magx™ !+ (m+ Dagx™ + (m + ax™™ + .. ... . Q)
=
Zijz] =m(m = Daogx™? + (m+ Dmarx™ "y m 4 2)(m + Dx™ + ... . (8
Putting the above values in equation (1), we have
x[m(m — Dagx™ 2 + (m + Dm)ax™ 1 + (m+ 2)(m + Dax™ + ... ]

+[magx™ ™t + (m + Dayx™ + (m+ Dax™ T+ ... 1
—[agx™ + a;x™ ™ + ayx™t + L ] ... (5)

Equating the coefficients of x™~ to zero,

[may+m(m—1ag]l =0

= Either @ =0 or m? =0



But a() #* 0.'.m = 0; 0

y=antco (6_y)m=m1_

am

Now equate the coefficients of x™ on both sides,
[(m+Da; +mim+ Da; +a] =0

(m+1D%a;+a;=0

ay = — =2
= L7 2, .. (6)
Next equate the coefficients of x™*1 on both sides,

[m+2)m+Day+(m+2)a; —a1] =0
= [(m+2ay{m+1+13-a;]=0 o [(m+2)%a,—a]=0

a = al = aO
= 27 m+2?2  (m+1)2(m+2)? and so on. . ()
Putting the values of a1, @2, ....in the assumed series solution (2),

_ m x x? %3
Y= doX [1 + (m+1)2 + (m+1)2(m+2)? + (m+1)2(m+2)2(m+3)? o ] .. (8)
Differentiating (8) partially with respect to m
92/__ m x x?
5o = Gox" logx [1 + i) + TR + .. ]
mln_ 2 2x? 2m+3
taox [0 (m+1)%  (m+1)2(m+2)2 ((m+1)(m+2)) to ]
= qpx™logx |1+ —E 4 — 2 4 = + ]
= GoXT 08X [ m1)? T mADE(m42)? | (mADZ(m+2)2(m+3)? | U
N m X x? 1 1
2agx [(erl)Z(m—H) + (m+1)2(m+2)? ((m+1) + m+2) +
x3m+12m+22m+32+ ...... ... (9)
Now
X x2

b4 =Y(m=0)=a0x[1+l—z+m+ ] (10)

72 = (35) oy = V110820, [ 4 L (14 )52 4 2 (1424 2) 0 4

312
Therefore, the complete solution is

2 3
y=(C+Clog) [1+ 5+ +2+ ... |

NI IP T



—262[x+%(1+%)x2+3—1!2(1+%+§)x3+ ...... ]

Case I11: Roots My, Mzgre distinct and differ by an integer.

In this case, assume that 7M1 < m; . If some of the coefficient of y series becomes infinite when
m = my, we modify the form of y replacing @o by bo(m — m1), Then the complete solution is given

by

y= Cl(y)mz tq (%)

my

C x(1-0EY _3W 9y
Example 5: Solve the equation dx? dx

dy _ ady _
Solution: Given ¥(1 —¥) g =35, +2y =0 . (D)
Let its solution bey = @ox™ + ayx™*! + apx™ 2+ .. (2)
Z—i} =magx™ !+ (m+ Dagx™ + (m + ax™ 1 + .. ... 3)

2
and 3732] =m(m— Dagx™ % + (m+ 1) (m)a;x™ !

+(m+2)(m+ Dax™ + ... . (4

dy dly
On substituting these values of”” x> @x2 in the given differential equation,

(x — x2)[mm — Dagx™ 2 + (m + D(m)ay;x™ 1 + (m+ 2)(m + Da,x™ + ... ]
—3[magx™ ' + (m + Da;x™ + (m + 2)ax™ 1 + ... ] +2[agx™ + a;x™ ! + a,x™ 2 +

On equating the coefficients of lowest power of x (i.e.xm-1) on both sides,
[agm(m — 1) — 3ay] = 0 or ap[m(im - 4)] =0
= Either a=0 o mim—-4)=0

Butas @o # 0.m =0,4

y=cn, ta (%)m1

Likewise, equate the coefficients of x™, x™*1 x™*2 equal to zero, and find out the values of

unknowns @g, 41, 42 etc.
For the coefficients of x™,

[-m(m—1Day—3(m+ Da, + (m+ Dm

aq + 2a0] = O (6)

(m=3)Ym+ Da; =(m-=2)(m+ Day
10



For the coefficient of x™*1,
[-(m+ Dma; + (m+2)(m+ Da; —3(m+2)a; + 2a;] =0
= [(m + 2)(m — 2)]ay = (m — D(m + 2)a

(n-1) 1) _(m~1)
N Q2 =) 41 = () %0 . (7)

Similarly,

. m . om  (m-1) _om
GB= ) 2T i m=—3) 0T Gz %0

_ (m+1) _(m+l) m (m+1)

T om a3 = m (m—3) %o ~ (m— 3)

_ (m+2) _ (m+2) (m+1) _ (m+2) S0 on

5% i) %= om0 T sy H0 .. (8)

— m (m-2) (m-1) 5 m 3, (m+1) 4
Y = agXx [1 + (m_g)x + (m_g)x + (m_g)x + (m_B)x + o ]

2 1 1
y1=(y)m:()=a0 [1+§x+§x2_§x4_ ...... ]

Now,
V2 = (Mm=4 = aox* [1+%x+§x2+§x3+§x4+ ...... ]
Hence the complete solution, ¥ = ¢1y1 + €25,

ASSIGNMENT

Use Frobenius method to solve the following differential
equations: 4 J
. 9x(1—x)—§—12—>’+4y=0

5 4x +2(1—x) -y =0

d—x);+ﬁ+xy=0
x(l——x)d (1+3x)—-—-y 0
dy+2y+xy—0

6 2xy+xy—(x+1)y=0

, 2x(1——x) L+ (1-0Z+3y=0

ANSWERS

- 1.4 2 1.4.7 3
1 y = () 1+ X+ +369 + .
811 2_}_8.11‘14
1013 101316

PAID

+sz7/ [1 +2x o+

2 y=C1 1+_x+

2.1 22 21 23 3'

1
5 A x2 1 .3
+Cyx2 1+ Sy ]



1
:(C1+Czlogx)[1——x +2242 xt— s x® }
+Cz[ X —2242(1+ )x +224262(1+ +)x+ ...... ]
4. v =(C+ Cylogx)[1.2x% + 2.3x3 + 3.4x* + ... ..]

+C[—1+x+5x% + 11x3 + ......]

y = x"(ay cosx + a; sinx) 5 @
_ x  x [N CRPVIE S
y—aox(1+§+70+-~)+&(1 x——+ ) 7

2 3 4
y=apx1-x)+a (1-3x+ 454204

BESSEL’S EQUATION

In applied mathematics, many physical problems involving vibrations or heat conduction in

cylindrical regions give rise the differential equation

2d?y | dy 2 2 —
* dx2+xdx+(x n7)y =0 .. (1)

which is known as the Bessel’s differential equation of order n. The particular solutions of this

differential equation are called Bessel’s functions of order n.

Let y= apx™ + a;x™ ! + apx™t? + L.

3—2: =magx™ L+ (m+ Dayx™ + (m + 2)ax™t + ...

dz}’ m—1 m
= m(m — Dagx + (m+ 1) (Mm)a,x

+(m+2)(m+ Dax™ + ...
Putting these in the given differential equation, we get

=x2[mim — Dagx™ '+ (m+ D(m)a;x™ + (m + 2)(m + Dax™ + .....] +
m+1alxm+m+2aZxm+1+ ... + [x2—n2aOxm+alxm+1+aZym+2+ ... =0

Equating to zero, the coefficient of lowest degree termin x, i.e. x™
m(m — Dag + mag — nag = 0 ay+0

- Indicial equation [m(m — 1) +m] —n* =0

= m? —n? =0.m=4n

Now coefficients of x™+1:
= (m i fiygda; + (m+ Day —n?q; =0

Coefficient [(m + 1)2 —n?]a; =0 of
(m+2)(m+ Da, + (m+ 2)a;, —na; +ag =0
[((m+2)>—n?la, +a;=0

m+2.

ap

2= T i
Similarly, [(m+3)? =n*lag+a; =0

12



aq

a3 - (m+3)2-n? = O, as a; = 0
So a1 = az = dg = ... =0
— az — ag
B4 = = Grayin? [tz —ntl(mid)? 7]
— m _ x* x* .
So y =" 1t e | )

Casel:For n=0, m=0 a m=+n

G_y_ ml_ x? -2
am ylogx + agx [ (m+2)%2—nt {(m—i—Z)Z—-nz} +

x* -2 -
[(m+2)2-n2][(m+4)2~n?] {(m+2)z_nz - (m+4)2—n2}] +
Y”=(§—i)m —-y,logx+a0[ x; Z+%{;—f—;—f}+ ...... ]

So, the solutionis ¥ = C1y1 + Gy

x? x4
y:(ClaO—{—Czlogx)[l——z—z—l—W— ...... ]
x2 2 2% (1 2

+CZaO [ 2 22 22‘42 {p + E} + ... ] 1

Case 2: For n non integral and equal to n(* = ™M) replace @o in equation (2) by 2va+1
— 1 n _ x2 x4'
Yo = gt [1 24 (n+1) + 22(n+1)4.2(n+2) Fo ]
A\l 1 1 /x\2 1 4
We get B (5) [\/n+1 B m(?) M= (E) to ]
n+2r
= Yreo(— )r Nrpey (g) =J,(x)
r n+2r
i.e. Jn () = XaZo(=1) \/m(z) . Q)

Similarly by putting m = —n, we get the other solution

1 x —n+2r
Jn () = X7o(=1)" N (5)
The resulting solution is
y= Cl ]n(x) + CZ ]-n(x)
Jn(x)&J - (x) as defined as above.
Case 3: If nis integral

Let y=u(x) J,, (x) Y =u (X)), +uly
y o=u'J,+2u, +uf,

zd y dy n2)y =
Putting these in s Hxg + (¥ —nf)y=0

x2(u" J + 2u Jn + ufn) +x(u ]y +ufy) + &2 —nPuj, =0
= u{xzj;; + x],'l + (x2 - nz)]n} + Zu'xzj;l + xzu”]n + xu']n =0

!

2V —
Now /» (x) is a solution of +x +(x n)y =0

13



- X%, +xfy + (% =02, =0
We get,

Zu'xzj,ll +x u"]n + xu']n =0
]n i, !
5 2 +i=0 (divide by Jn'x?)
Integrating 2108 J,, + log, u' log, x = logc
= wl7x =B Where B is constant of integration.
t B .L
= T Tyt
dx
u=A+8E8B .
Integrating fx(fn )’
So the solution of Y in this case
= u(x) J, (x)
= A]. (x)+ B, (x
Jn () + BJ, () [ (]n( S
= AJ,(x) + By, (x)
x) =J,(x)
where o " o x(Jn (x)) is the Bessel’s function of the second kind and /» (x) is Bessel’s

function of first kind.
RECURRENCE FORMULAE FOR Ja(x)

The following relations are the recurrence formulae for Bessel’s functions and are very useful in the

solution of Boundary value problems and in establishing various properties of Bessel’s functions:

L,
= (" Jp () = 5" Jyg ()
2.
(T (@) = =X i (6)
3.
Ju () = 3= Unaa () + Jnga (5)
4. ,
Jo' ) = 3 Unea () = Jnr ()
5. , .
Jn (x) = T ]n(x) - ]n+1(x)
6.

Jur1 () =22 1, () = Jam1 ()

EXPANSION FOR Jo AND J1

, n+2r
We know that Jn () = Erzo(—1) \/n+r+l (2)

Taking n = 0 and 1in above Bessel’s function, we get
1 [x\? 1 X 4 1 x 6
1o =1-3() +5: () -5 () +

14



and S1(®) 22[1 _%(g)z +ﬁ(§)4 _ﬁ(g)é + ]

VALUE OF J1(x)

2

In Bessel’s functions, the function J1/2 is the simplest one, as it can be expressed in finite form.
Taking * = 1/2 in the value of /x(X), we get

e = () [ty i@ i @'

2

x 2
Now multiplying the series by 2z and outside by x, we get

a8 2 .
Ji2(x) = ff[f, 9;—!+%—--*]=\[%smx

Similarly, taking 7 = 1/2in the value of /- (), we get

]—1/2(95) = \/7C05X

GENERATING FUNCTION FOR Ja(x)

TG
To prove that €2~ ¢ = Xp=—ut" Ju(X),

xt .)C

1
We have e7*@ D = ¢ x e3¢

=[5+ 5 E) R @) [ [ a s E) RG]

The coefficient of t™in this product is

%G)n - (n-:l) ! @Hz EY (nl+1) ! G)nﬂ — e =Jp(x)

As all the integral powers of t, both positive and negative occurs, we have

(70 = 300 + 1 () + 21 (0) + 500 + -
HEY () T ) + 3 3 (x) +
— Y )

1 1
Thus the coefficients of different powers of t in the expansion of efx(t_F) give Bessel’s functions of various

orders. Hence it is known as the generating function of Bessel’s functions.

15



Example 6: Evaluate Jo € Jo(bx)dx

Solution: We know that
J.(x) = %foﬂ cos(nf — xsin@) do

For
1
Jo(x) = L [T cos(xcos0)  do
n=240, or
1 pm .
Jo(x) = ;fo cos(x sin @)
ae

= Jobx) = %fon cos(bx sin8)df = %fof cos(bx sin 8)d@

So fi e Jo(bxydx = J;" e |2 [ cos(bx sin 6)do | ax

e(-—a-H’ b sin 0)x+e (~a~-i b sin 8)x

3] |
=i o 2 dx dy

’E [e(ibsin 9—a)x e—(ibsin (')-i-a)x:lOC 0
0

= lfl +
70 |(ibsin@-a) —(ibsinf+a)

1 = —1 1
= ;f()z [(i b sin 8—a) + (i b sin 9+a)] d6

T
— sz *
2170 ¢2p2s5in2g—a?
1 Z 2a
= _fz ___s*
270 a2+b2sinZe

do

_ Z_af% sec?o
T x J0 a?sec20+b2tan 20

2a (= sec?d
=g seef g
7 70 (a

24 tan 26 +a?
Now take J(@ +b¥H)tand =t
J(a? + b?) sec’0 do = dt

Further, if 6 =0 it implies t=0
6 =g it implies t =

dt

J(a?+b?%)

— 2a o 1
e ¥ Jo(bx)dx == [/ 7

16



2a w 1

= il b

=2 P tan~! Er
- A/ (a2+h?) La alg

= # vy [tan_l G) —tan~! 0]

=G = o

Example 7: Show that Ja(x) = (i_g B g)h(x) + (1 B i_j)]"(x)
Solution: We know

Jas1 () = 21 () = Joa (%)

forn =3
Ja() = 2J5(x) = J2(x)
Forn =2
J5(x) =2 J2(0) = J1 (x)

Forn=1

J2(0) = 21(x) = Jo (%)

(1)

()

3)

Substituting J2 (%) from (3) in (2), we get

J3@) = 22100 = oG} = )1 ()
= (- 1) 1@ - ()
Now substituting for /2(*) and J3(x) in (1), we will have
120 = 2{(5 = 1) 100 =T} = E10) - o)}
=(GF-Dhe+(1-3)hw

Example 8: Show that

» ]_%(x) = ]%(x) cotx

17
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) J 200 == \/% (sinx+ =
a2
(iii) ]_g(x) = J%[%sinx%—sx: cosx]
Solution: (i) We know
J i(x) = «[Z cos X Ji(x) = \[Z sin x
2 x and 2 x

J 1() \/gcosx
i = = cotx

]%(x) J% sin x

J_1(x) = J1(x) cotx

Hence
(i)  We know

Jae1 () = 1 () = J41 (%)

1
n=-—-=

~ For 2
J5() = =7) 2(x) = J1(x)
2 2 2

— 100~ 1)
1J7 J7 .
= —— [-cosx — |—sinx
J 3(x) = -——J%[CO;X + sinx]
2

(iif)  We know

]_%(x)=\[%cosx ]%(x) =\/g;sinx

Juet () = 21 () = Jgr ()
3

]_%(XD =

. for *T 73

J s = =3 5@ =] 1)

1 2 oS x .
3 = —— 1 — /1 = | +
J3) = =1 16 = )16 = = [ [25% + sinx] @

from (1) and (2), we will have

3 2 . ’2
J5(x) =—=X— —[msx+smx]— — COSX
- X nx X X

2

= | [(%— 1) coSsXx +§sinx]
X X X

Example 9:Prove that

18
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®  LPom]=—J1(x)

@) o[xJi] = o)

(i) o (X" n(ax) ]| = @ x4 (x)

@) 2= [ ()] = =X 01 (%)
Solutions:(i) We know that
S0 (0] = =X (1)

For n = 0, we will have

= [0 (0)] = =2/ (x)
o) = ~/1(x)

(i)  We know
= [ ()] = 2o (%)
For n = 1, it will give
=[x 1 (0] = 2o (%)
(i) To prove % [x" ). (ax) ] = ax™ ] (x)

Letax=¢t or *T3

n
" (ax) = (£) Ju(®)
Differentiating with respect to x", we get

L @) = L{(E) 1] &

1 d
== t"h®]a

1
=== 1" (t)’

= —=- (@)1 (ax)

= ax"],_;(ax)
(iv) To prove
v)

LI (0] = =X (6)

We know

19



) 1 % n+2r
Ja(6) = Ermo(=1)" - \/m(g)

1 1 27

—T o o — T
X (x) = 25 0(—1) r!\/(n-l——r%-l)'Z"“r'x

i -n — N NT 1 1 2r—1
dx [x ]n(x)] - Zr‘:l( 1) T'\/(ﬂ‘*‘?“}'l) 2?’!-}-21‘ .27' X

1 xn+1+2r

VRS B g =1
= 2 (1) =D+ 1+ -1 +1) 201
Taking " —1) =k

o K 1 o\ HL1+2r
=—x"" Y=o(-1) 'k!,/(n+1+k+1)'(§)

= '"x—n]n+1 (X) .

Example 10: Show by the use of recurrence formula, that
@ Jo(x) =522 = Jo(2)]
(i) J100) = —J1(2) +2J2(%)
Solutions: (i) We know
T (0] = =2 (2)
forn =20
= o) = =1 (x)
Differentiating with respect to x", we will have
L oGl = — £ [ 0)]
Jodx) = 1)
But Jn @) = 3 Vet () = Jusr (0]
- forn=1
1) =3 o) = 12 ()]
Jo(x) = =2 [o(x) = /()]
= 21200 = Jo(®)]
(ii) We know
Jn @) = 5 Ut () = Jsa ()]
1169 =3 00(®) = ()]

Differentiating with respect to x", we get
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J1G) =3 [Jo(¥) = J,(0)]
But Jo' () = =J1(x) and also
Jn (%) = Jpm1 (6) == Jn (%)
Forn =2
() = J1(x) = 2] (x)
Ji @) =3[ = 11 (0) + 220
=J2(0) = /1 (x)
Example 11:Show that
) 4Jo () +3Jo(0) +J3(x) =0
(i) 4 /(0 = Jn2(0) = 2Jn(X) + J 42 (x) = 0
Solution: i)
We know =, (0] = =240 ()
for n=20
o)) = =1 ()
Differentiating with respect to ’x’, we get
Jo () = =J1(x)
i@ =3 Un1 G0 = Juin @] O
forn=1
100 =3 o) = J2 ()]
Differentiating again, it will give
Jo () = 5 [1o() + 2 ()]
=21 @ + @)

From (1), forn = 2
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() =311 = J5(2)]
Jo @) =3[ + 30160 = 360
=2[31(0) = J3()]
=213 Jo(x) = J5(x)]
4o () +3 Jo(x) +J3(x) = 0
(ii) We know
Jn@) =3 Un-1 () = Jrin (@) O
Differentiating with respect to x’, we get
S ) =5 Unea @) = S (@] @
From() 1@ =302 (@ ~ 1 @)
and Jas1 ) =5 U () = Jg2 (0]
~ From(2), we get
S () = 5[5 U2 = 1 (0} = 3 U 0 = Js2 ()}
= = Uz (0) = 2/, (6) + 42 ()]
4]0 (6) = Jo2(2) = 2 Jn () + 42 (%)

Example 12: Prove that

X

@ —JE0)] = o= 210 — J34. ()]

n
n+1

@) o 200 +J2,,0] = 2[EE00 - 222,
Solutions: (i) LHS = 2/, (x) J (x)

But Ju1 () = 2 (@) = Jumy ()
= ]n (X) = '22:; []n-!—l (x) +]n——1(x)]

and Ju @) =5 U1 () = Jusa ()]

LHS= Zjn(x)];z(x) = 2-% Un+1(x) +]n-—1 (x)] X % Un~1(x) _]n+1(x)]
- % Urzz—l(x) _jrzz—}-l (X)] = RHS
Hence the result

(ii) LHS = 2/5 ) (6) + 2541 (0 11 ()
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But Jn () = gln(x) = Jn+1(x)

and Jn () = Jpoy () — gjn x)
> Ju1 () = Ja (1) =25 Jga ()

s = 2@ {100 = Jas1 (O} + 214100 {Ja 00 =1 (0]

n+1

X

= 2[2J20) ~ 1o () Jsa () + s (2. J () —
=2[2/200) -

J2 ()]

n+1

X

]rzt-l-l(x)] = RHS

Example 13: Prove that
@ [Jo@J1(x) = =3 Jo(®)]?

(i) fy xJolax) = ~]4(ar)

1

(i) Jy" ™o (bx) = ==

Solution: (i) We know Jo(x) = —/1(x)
JJoG) J1(x) = = [ Jo(x) Jo (x)dx

: = = o(0)?
(i) Let ax =t . adx = dt, (0tor) = (Otoar)
fo xJoax)y dx = [ £Jo (0.5

lard

= %foar th(Odt == [, - [t (©]dt

a a?

= 2 Eh@IF = lar 7(ar) = 0.5./1(0)
- irh {ar)

(iii) fgoo e”“Jo(bx)dx

= fooo e"“x.%fon cos(bx cos @)dg dx

Integrating the order of integration, we get

=1 foﬂ fooo e ™% cos(bx cos @) dx do

b4

= lfﬂ [L {—a cos(bx cos @) + b cos ¢ sin(bx cos (p)}] do

oo
w70 [(aZ+bZcosie) 0

a 1 ,m asecz(p aseczgo

.
=f7fo”md¢=; 0 m“"/’%f&m
2 t z

_ a tan 2 a
T [tan ' (\/az-l-l()pz)]o % Va2+b?
- &gt (-0
2 VaZ+bZ
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Example 14: Starting with series with generating functions, prove that

ann(x) = x[]n—l(x) = x[J,-1(%) +]n+1(x)}] and

xn(X) =] () = X Jp1q (%)

1 1
Solutions: We know ezx(t ) = 220 0 (x)

Differentiating both sides with respect to 't’, we get

%x (1 + tiz) ) e%x(t_i) = ¥® nt" 1 (x)

1

27 (143) 22 () = 320 "7 (@)
Equating the coefficients of £” 1, we will have
7 1 () + 3% o1 () = ) (%)
= 2n J, (x) = x[n—1(x) + Jp1(x)]
Now differentiating with respect to 'x’, we get

Ye-Derd) o 32, 0,0

(6 =3) 2% 7 () = X% 75, (%)
Equating the coefficients of ‘t™’, we will have
a1 () = 31 (6) = J ()
. Jn () =3 U1 () = Jsr ()

From (2), substituting /»—-1(x) in (3), we get
Jn G = 5 [{F @) = a1 D} = Js1 ()]
5 Jn () == Jn () = Jpg1 ()

Example 15: Establish the Jacobi series

cos(xcos @) = Jy— 2], cos28 + 2], cos40 — ... ...

sin(xcos @) = 2[J; cos 0 — [3c0838 + J5 cos 50 —

1 1
Solutions: We know ezx(t D= Lot (x)

= Jo() + Ty Ju () (£ + (-1 ) O

Now, let t =cosfB +isind and ¢

To get tP = cospf + isinpf and t™P = cospf — isinpb

24

1 .
—=cosf —isind

)

(2)

)



and thus tP +t7P =2 cospd and tP—t P =2isinpd

From (1)
e®sin b = Jo(x) + 2i J;(x) sin@ + 2J,(x) cos 20
+2iJ3(x) sin 36 + 2J,(x) cos 46 + ... ...
cos(x sin @) + i sin(x sin @) = {Jy(x) + 2/,(x) cos 260 + 2J,(x) cos 48 + ... ... }
+i{2];(x)sin@ + 2J3(x)sin6 + ...... }
Equating the real and imaginary parts, we get

cos(xsin@) = Jo(x) + 2[J2(x) cos 28 + J4(x) cos 40 + ... ... ]

and sin(x sin@) = 2{/ 1 (x) sin8 + J3(x)sin36 + ...... }

Replacing 6 by 2 % we get
46 + cos(xcosB) = Jo(x) — 2cos 26 J,(x) + 2]4(x) cos

and sin(x cos 0) = 2[J;(x) sinf — J3(x)sin36 + ...... ]

Example 16: Prove that

() sinx=2[J1(x)—J300) +J5(x) — ... ]
(iiy cosx =Jo(x) —2J2(x) +2J4(x) —2Js(x) + ...

Solution:
We know
cos(xsin@) = Jy(x) + 2[J,(x) cos 20 + J,(x) cos 40
and sin(xsin8) = 2{J;(x) sin@ + J3(x)sin36 + ...... }

(i) cosx = Jo(x) + 2{/,(x) cosm + J,(x) cos 21 + Jo(x) cos 3T + ...... }
= Jo(x) + 2{—/, () + J4(x) — Jo(x) + ...... }
=Jo(x) = 2J3(x) + 2J4(x) = 2Js(x) + ...
sinx = 2{]1(x) sin%+]3(x) sin%Z + J5(x) sin%%— ...... }

_T[
2

On taking o , we will have

()
=2{1(x) = J3(x) + J5(x) — ... }

cos0=1=/(x)+2{J,(x)cos2x 0+ J4(x)cos4x 0+ ......}
= 1=Jo(x) + 2J(x) + 2/, () + ...... (i) Taking 6 = 0, we get
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ASSIGNMENT

Compute Jo(2) and J1(1) correct to three decimal places.
Express /5(x) in terms of Jo(x) and J1(x)

3. Prove that
@ o () =3 Uno2 () = 200 (&) + Jug2 ()]
(6) = [ Vs ] = 2[00 = J21 @]

2 (3-x% | 3
5(x) = ,— sinx ——cosx
4. Prove that ]5( ) mx {xz x }

Prove that
@ [Js0)dx =c =) =2 J1(x)
®) [/, 2(D)dx = 3x2[Jo* () + 1 *@)]
6. Show that
2y In(0) = = [ cos(n0 — xsin0)do, n being an integer.

b) Jox) = %fon cos(x cos 8)do
0 Jol+2hE+2h 2t =1

ANSWERS
0.224, 0.44 1
384 72 12 192
5@ = (EF-Z-1)h@+(F-F)h) 2

EQUATIONS REDUCIBLE TO BESSEL’S EQUATION

In differential calculus, we come across such differential equations which can be easily reduced to
Bessel’s equation and thus can be solved by the means of Bessel’s functions. The following are some

examples of such differential equations:

2dy | dy 2.2 _ 22\ —
x Tt (k ron )y =0 to the Bessel’s Equation.

1. Reduce the differential equation ™ dx2
dy _ 4y dly_dy
Putting t = kx, sothat ax ~— " dr and ax2 — ™ 4t2 in the above differential equation, we get

2
28y 2

y 2y,
a2 TV n°)¥ =0 \which is the Bessel’s Form of Equation.

Its solution is ¥ = ¢1/n () + 2/ (t), nis non-integral. or
y = ctfn(8) + oY, (), nis integral.

Hence solution of the given differential equation is
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y= c1Jn(kx) + 3/, (kx), n is non-integral.
or y = cifp(kx) + c2Yy (kx) n is integral.

+a +k2xy 0

2. Reduce the differential equatlon dxz to the Bessel’s Equation.

dy _  npdz n—1
Putting ¥ = X"Z, sothat ax ~ % ax T 7
& ) LZZ n—142 _ n—2
and gz = X gez T 20" oA n(n = D2 5, the ahove differential equation, we get

x“H d’z s+ (2n+ a)x < + (k*x? +n*+ (a—1Dn)x" 1z=0

Dividing throughout by x*~! and putting 2n + a = 1, we get

2z, .
2Lz xj—;+ (k2x2 —n?)z =0

dx? , Which is the Bessel’s Form of Equation.

And its solution is Z = ¢1J, (kx) + ¢] , (kx), nis non-integral.
or y = cifn (kx) + 2 Y, (kx), 1 is integral.
Hence solution of the given differential equation is

y=x"[c1) (kx) + co] 5 (kx)], mis non-integral.
or y = x"[c)n (kx) + CzYn (kx)], nis integral.

+cdy+k2xy 0

3. Reduce the differential equatlon dxz to the Bessel’s Equation. Putting

dy _dy dt _ 1 qndy

y=1t" sothatdx  dc dx m dt
dy =i(it1—md_:v) 1i1-m =Lt2—2md_y+ Lmiamdy _ _
and dx2  dt \m dt)" m m2 de?z ' m? dt in the above differential
equation, we get

7 d*y  1-m+em 1— dy 2
mzt mdt2+—m2 tm + k tmry—O

Multiplying throughout by m?/t*™ e get

dt2+(1 m+cm)—+(km)2tmr+m ly=0

To reduce this equation to the equation at point 2. above, wesetmr +m—1 =1

r+2c-1

bem=2/(r+1anda=1-m+cm=="5=14,c e get the equation as

diy

t dt?

4y 240, —
tag T (km)ty =0 \hich is similar to equation at point 2.

Hence its solution is
y =xM"[e )y (km ™) + cp)_ (kmat/™)] no non-integral.  or
y = x"" ey, (kem x ™) + ¢y (km x V™)), s integral.
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ORTHOGONALITY OF BESSEL FUNCTIONS
0
1

1 a*f
fo xp(ax)]n(Bx)dx = {_
2

Prove that (]n+1(“))2' a=p

wherea, B areroots of J,(x) =0

Proof: Let ¥ = Ju(ax) and v = J» (BX) are the solutions of the following differential equations
x*u” +xu + (@2x? —nPu=0 (1)

x2v" +xv' + (B2 —nPv =0 )

Multiplying equation (1) by /% and equation (2) by %/% and then on subtracting, we get

x' v—u )+ W —uv) + (@ - p2xuv =0
i y . r _ 2 _ 2
= - [x(uv—uv)] =(B*—a*)xuv @3)
Now, integrating both sides of equation (3) within the limits 0 to 1, we get
(B? —a?) folx wdx = [x@uv—ur)j=uv—uv (4)

Since u=/,(ax)and v = J.(Fx)
u=al, (@) and v =B Jn (B%)

Substituting these values in equation (4), we get

1 _a Ja @ (B)=B Jn (B)n(@)
fO x]n(ax)]n(ﬁx) dx - (ﬂz—az) (5)

Casel: a#/f

Since @, p arerootsof /, (x) = 0, so we have /(@) = J(B) = 0. Thus equation (5) results in

Jy % Jn (@), (Bx) dx = 0 ©)
Casell: =8

In this case RHS of (5) becomes 0/0 form. So to get its value, apply L’Hospital Rule, by taking « as
constant and A as variable approaching to «, we get

- ! i ﬂ’ n 0
Litg g [y 2 Jn (@), (Bx) dx = Limy,, (e (2)

(Bé-a?) 0 or

@ Jn (@], (B)

. 1 .
Limg, J x [, 2 (ax)dx = limg_,, 25

=30, @)*
= %Unﬂ(a))z(using Jo = —Jnt1) (7)

The relations (6) and (7) are known as Orthogonality relations of Bessel functions.
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FOURIER BESSEL EXPANSION

If (%) is a continuous function having finite number of oscillations in the interval (0, @), then we
can write

f0) =321 ¢ Tn(ayx) = ¢1 Ju(@1x) + ¢z Jp(@zx) + -+ + ¢y Jp(apx) + (1)
where®@1, @z, ... are the positive roots of Jo(x) =0

To determine the coefficients €n, multiply both sides of (1) by ¥/ (@¢»X) and integrating within the
limits O to a, we get

Jix £ OO T (@) dx = ¢ fi o Ju (@) dx = ¢, & Joyi?(a ay)

2

= ¢, =——
" a @ ay)

Jy % £ J(atp0) dx
The relation (1) is called Fourier Bessel Expansion of f(x).
BER AND BEI FUNCTIONS

The differential equation generally encountered in the field of electrical engineering for finding the
distribution of alternating currents in wires of circular cross section is as follows:

azy

X
dx?

W oy =
+dx ixy=20 )

which is the special case of first form of differential equation reducible to Bessel equation with n = 0
3
and k2 = —i, so that k = v—i = iv/i = iz(Refer Art 18.9).

Thus, the general solution of differential equation (1) is given by

y = cJp (l% x) + Y (zg x)

] (L% x) _ 1 _ i3x2 i6x4- i9x6 i12x8
Now “° - 22 T n22t (3n226 ' (4228
4 8
X X
=[1—22+2222_"']
2242 1 2242618
+i I:xZ x() " xl() ]
22 224262 1 22426282102 (2

which is complex for x is real.

The series in the brackets of (2) is defined as

x4 x8
ber (x) =1~ iz T oigzergr T

x4m

=14 X1 D" mer e

xZ x6 xl()

2 are T atgigiier

and bei (x) =

x4m—2
= = In=1CD" e

where ber stands for Bessel real and bei for Bessel imaginary.
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3
Thus we have /0 (ﬁ x) = ber (x) + i bei(x)

3
Similarly, decomposing Y (lz x) into real and imaginary parts, we obtain another two functions
known as ker (x) and kei (x).

Properties of ber and bei functions

4
1.dx
4
2.dx

[x.% ber (x)] = —X bei (x)
[x.% bei (x)] = —x ber (x)

’” X" _ L _
Example 17: Solve y +7+ (1 9x2)y =0

"y i (1- L)y =
Solution: y +7F (1 9x2)y =0

2. " r 2 —'l _
N x°y +xy +(x 9)y—O
Comparing with Bessel’s equation

X2y +xy + (2 —nd)y=0
1

We find " 73
.. The solution of the given equation is ¥ = ¢1/1(x) + ¢;Y1(x)
3 3
I i . 1 _
Example 18: Solve y +%t (1 6.25x2)y =0
" y_’ _ + _
Solution:” tot (1 6.25x2)y =0
no oy 100 _

= y +?+(1_625x2)y—0 o s

Comparing with the Bessel’s equation, we find n=2%753
. The solution of the given equation is ¥ = c1Jz2(x) + c2¥2(x)

5 5
1" + ' +1 _ O
Example 19: Solve Xy Ty Ty

1
Solution: Let t = xm, so that

dy _dy dt 1 Loqgdy 1, .4 m dy
priabrtirmiied LR bnd (O it
ﬁ._i(i m-1d_>')d_f
dx?  dt \m “dt J dx

—i — —md_y il-de_Y] il—m
—[m.(l m)t ™ Ly L dom 2]

I S 1-2m @ | 1 2omd’y
T m? (1 -m dt+m2t de?

dy dy 1
xdx2 + dx + 4y
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e 1-2m dy 2-2m 42 y] 1-m 4y
==|a-mye term iy oy =0

1 9md?y  1=m qomdy | 1 qemdy , 1
= P s e P e e — free
mzt dt2+m2t dt-}_mt dt+4y 0

tzdt2+(1 m+m)t—+ mtmy 0

2d% dy may, —
R brve ol 2 +2 Tm Zgmy =0
Comparing with

vy g2
xdx2+adx+k ny =0

_ 2_mt L
We get a=1 k%= ;M =1 it implies m=2

ie. k2=1 and n:%:@
The solution of the given equation is
y = cJo(O) + Yo (1) = ciJo(Vx) + Y (Vx)
Example 20: Solve xy +2y +§xy =0
Solution: Let ¥ =x"z so that
ay n dz n-1,

= X"— nx
dx dx+

d?y n d%z _1dz —2
—t = e 2T = n(n — Dx" 0z
dx? dx2 + dx t ( )

._'xy" +2y + %xy =0

x”“d /+(2n+2)x —+[{n(n—1)+2n}x” 14l x”“ ]=O

=
2d%z dz 1.2}, =
N x dx2+2(n+1)xdx+{n(n+1)+2x }Z—O
- _1
Taking 2(n+1)=1 e =73
2d?z o dz (1.9 1\ _
= X dx2+xd,r+(2x 4)2_0

Z=61]1(\Ex+02)’1(\g x))
= 2 2

l
=>y =X z {c1]1 (\/_) + Y1 (\/_)}
Example 21: Solve Xy +y =0 (1)

1
Solution: Let ¢t = xm, so that

dy dydt 1 tl_m dy

dx dt dx m dt
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d’y _d [1 {—m dy] o
and dx? ~ dt Im dt] " dx

o d? o d N
{ tlmdt¥+m( —m)t. y} g

dt
xy' +y=0
d%y dy
R tm{ t2- Zmdtz—{——(l m)tt—2m }+y—0
2-m 4%y Y 41— 1-m 4y 2.,
N t= st (A —m)tm " =+ mTy =0
dy
N dt2 +(1 m +m?tmly =0 @)
Comparing both
xy" + ay' + k?xy =0
We will have
a=1-m, k=m and m-1=1
iee. m=2 k=2 and a=1-2=-1
1 1+1
n=m =g 1
Hence the solution of the equation (2) will be
y = t{c1)1(28) + ;Y1 (26)}
1
=y = 22{er)1(2Vx) + e (2Vx)}
" 20
Example 22: Solve 7 (9x-%)y= %)
1
Solution: Let £ = xm or x = t™ so that
dy _dydt 1 4-mdy
dx  dtdx  m dt
Py _ AL aomdr], d
and dx?  dt [m t dt] I
l—md hd —m 4y 1-m
{ 1 ~ (1 - m)t dt} t
1 j2-amdly L _mplmam Y (gpm _ 20\ _
= mzt dt2 7 (1—-m)t de (% tzm)y—O
2d%y 2fqs3m _
N t° -5+ (1- m)t —+m {ot 20}y =0
d?
R t2 d:z’ +(1- m)t =+ (9mEem — 20m?)y = 0
=2
Taking 3m=2 e, MT 3, we will have
2diy 1 dy 280y _
Cartaty (4t 9)y_0 2

Now let ¥ = t"z(¢), so that
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dy

dz
— n %2 n—1
dt—t dt+nt zZ

d’y _ ,nd’z n-14z n-—2
=ttt 2nt o +n(n—Dt" ez

Substituting these in (2), we get

2
28z {Zn +%} tﬂ“%-}- [{n(n —1) +§n —%} "+ 4t"+2]2 =0

" ©
Now for 2"+%=1, n:%
T M

Dividing (3) by t" and substituting for n, we will have

2y e ae? — 9z = 0 “

The solution of (4) is

z = ¢1J3(28) + ¢, ¥3(2t)

Ly = 6les(20) + Y3 (20)]

|
Y= (xg)g [01]3 (Zx%) +c Y5 (Zx%)]
= x2 [euJs (ng) + Y5 (ng)]
Example 23: Show that
(i) *Ja(®) is a solution of the equation Xy + (1 —2n)y +xy =0
(i) X ™Ja(®) is the solution of the equation *y" + (1 +2n)y +xy =0
Solution: Let ¥ = x"/n(x)

=g () Y, ()

dzy nq" n—1y" n-—2
and dx? =X ]n (x) + 2nx ]n(x) + n(n - 1)X ]72 (x)

Xy + (1 =2n)y +xy

= x"*1] (%) 4+ 2nx", (x) + n(n — 1)x""1, (x)
+(1 = 2n){x"), (0) + nax™ 1, () + x" 1, (0}

= 2" () + 2", () {(2n + 1 — 2n}
+Hnn—1) +n(1 - 2n)]x™ 1 + x" 1Y, (x)
= 2" () + [ () + (% =P, ()] = 0
As Ja(x) is the Bessel function and is a solution of *¥%y" +y + (x* =n?)y =0

Hence, "/ () satisfy the given equation and therefore is a solution of it.

[
Example 24: Show under the transformations Y =7 Bessel’s equation becomes u’ +
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1—4n2}u -0
4x2 7, Hence find the solution of this equation.

{1+

Solution: We know that the Bessel’s equation is

xzy" + xy' +(x2—n®)y=0 (1)
=2
Taking Y= &
1 1 I 1 8
e

and v :\/i?u”+2(_%)x_%u,+(_%)(_%)x_gu

Substituting these into (1), we get

2 i N_ 3y 3 5 } ir _l 3 2.2 i—
x{ﬁu X +ox2u +x{\/§u+( 2)x2u}+(x n)\/g—O
5, 11y, 1 T R,
= Xz U +{—x2 +x2}u +Ex 2—%x 2+x2—3—§}u=0
3o 3 3-2-4n?
= xX2u +{x2+ W }u——O
" 1-4n?
. u'+ {1+ e =0 @

Hence the Bessel’s equation (1) becomes (2) as desired.

Now the solution of (1) is ¥ = c1/n (%) + ¢2¥,(x) (3)

u

N == Cun (x) + Y, (%)
= u = Va{er ), () + €%, ()}

u
Example 25: By the use of the substitution Y =T so that the solution of the equation
2’y Ay (2 1Y
dx? +xdx+(x 4))’—0

can be written in the form
sinx cos.xy

Y=gty

X

Solution: Taking

L
Y=
dy 1 du 1x—;u

= dx_\/fdx 2
and

d?y L q%y —Edy 3 3

—= =X 2———X 2-—=+>X 21U

dx? dx? dx+4

Substituting these in the given equation, we get
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1 32 5 1 3 1
—d -2 d
xz{x e —x Ity 2u}+x{x 25—~ x 2u}+(x2——)x 2u =
dx? d dx
3 42 ld 1 ld 1 3 1
= X7 o — X2 ox IU A T — =X 2u+(x2——x Z)uz
dx? d dx
3 32 3 4
d*y 4’y
z— = - - R =
= gE T U= nnlies gz T ¥ =0
Its Auxiliary equation is D?+1=0 itimplies D = +i

u(x) = cycosx + ¢y sinx

sin x

Vx

= o8
Hence Y=RTa R

Example 26: Show that
p
f x(ber?x + beix)dx = p(ber p.bei' p — bei p.ber p)
0

x 4m

— [} — m
berx =1+ Ym=1(-1) 224262 (4m)? and

Solution: We know

beix = — ¥4 (— 1) i
ma=1 224262 (4m—2)?

%(x bei x) = x ber x
fop x (ber? x + bei® x)dx = fop{(x ber x).ber x + (x bei x)bei x}dx
= fg} {dd—x (x bei' x).ber x — % (x ber’ x)bei x} dx

= [ber x.{x bei’ x} — [ ber x(x bei' x dx) — bei x {x bei x +bei’ xx ber xdxOp

= p(ber p.bei'p — bei p.ber p) hence proved
Example 27: If @1, @2, A3, ... ... @y are the positive roots of Jo(X) = 0, prove that
o 1 o] n —4
(l)§=2n 1i?5a(aX)(l)x _ZZn 1 3] (C( )]O(anx)
Solutions:(i)

Let the Fourier Bessel expression of
1 1
T is 3= Zn=1SnJo(a@y X)
and integrating with respect to ‘x’ from 0 to 1, we get
11 1 2 1 2
Jy 3500 x) dx = ¢, fi xJo” (ay 2)dx = ¢ 5 [1(ay)]

:Cngjlz(an) = %folx]()(an x)

dt

e d —
Let anX =t it implies Sines

x=(0,1) Itimplies t— (0toay,)
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ant

= lo(t)—

= anf to(t)dt = 5= [ dt(tjl(t))dt

2

[ (O = 5 ans (@)

T 2a,?

1,2 1
Cny i (an) = Eh(%)

1 1 o
It implies = i@ Hence 2 Zn= Y (a )]O(an x)

(ii)) Let the Fourier-Bessel expansion of ¥ is % = %71 ¢, Jo(@, %) and integrating from 0 to 1,

we get fol 23Jo(an %) = ¢ f % Jo? (@n x)dx

n d
= Cngll (an) = fa at 3]0(0 : =t it : dx:(z_i

if @nX =1 jtimplies
an d
=% L2 (t(©) at
= ﬁ[tz.tjl(t) — [ 2t.t];()dt]*"

S (WACREI P AGEL]

Sen® -2 2 (2Rpm)a] "
= 5134 @ - 262,15
= a1 (@) = 20,2/ 5(an)]

= i [, /1 () = 2J5 ()]

1

= = [asi (@) = 2{F @) o]

Up

= [(==) h@) = Joa)]

- (az ;4)]1(0[") as  Jolap) =0

or =i (57)

x? =238 (75— Jolan 1)

Hence

Example 28: Expand f(*) = ¥* inthe interval 0 < x < 3 in terms of function J1 (& %) where @x
are determined by J1(3@) = 0

Solution: Let the Fourier-Bessel expansion of f(x) = x%is
Xz = Z?f:l Cn jl(an x),

multiplying both sides by X/ 1(a x) and integrating from 0 to 3, we get
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3 3
Jo x* J1 (@ X)dx = ¢, [; xJ1 (@, )dx
Let x = 3t sothat dx = 3dt
8 [ t4:(3at, ©) 3dt = ¢, [ 3t J>(3a, 1)3dt

Ch fol t);2 (3a, t)dt = 27f01 t*], a,, t)dt

1 2 _ 3a, z* d_Z
Cpn 2]2 Ba,) =27 fo glan4]1(z) 3a, (where

d
3a,t =z and dt =§§;)
1 (3a,
zvnsfoa Z4]1(Z)dZ

1 3ay, d
= Wfo “ 225(22]2(2))(12

55 122.225(2) = [ 22,225 (D) dz ]y

3u
0

= 90;5 [2412(2) -2 f;—z(23/3(z)dz)]

- 90{1n5 [24]2(2) - 223]3 (Z)]ga”

= —[81a,Y>(3a,) — 2 x 27a,%/3(3a,)]

9
= aan [9an/2 (3(171) - 2]3 (3(1'”)]
Cn = anzjzg(San) [ganIZ(San) - 2]3(3Cln)]

x3 — 62;1‘0:1 3an]2(3“n)_2]3(3an)]1 (an x)

Hence an?J2* (3aty)

ASSIGNMENT

Solve the differential equations:
" y' . i _
o 7 tot(8-5)y=0
(ii) 4y +9xy =20
(iii) x%y" —xy +4x%y =0
2. Ifa, @, ..., @y arethe positive roots of Jo(*) = 0, show that

1O Jolan )

2 B =1 an ]1(“71)

3. Expand f(*) = x% in the interval 0 < x < 2 in terms of J2(x X), where @xare determined

by Jo(ay) =0,
4. Prove that
. d d .
(1) - [x.a ber (x)] = —x bel (x)
(ii) Ed; [x.-d% bei (x)] = —x ber (x)
ANSWERS
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1) ¥= Ch(2V2x) + Gy q(2V2x)
() y=+vx (cl I (x%) G (x3)>
Gi) ¥y = x(C /12 x) + C;Y1(2x))

2 o] Ja(ay x)
X% =4 Yt n J3(2 ay) 3.

LEGENDRE’S EQUATION

Legendre’s equation is one of the important differential equations occurring in applied mathematics,
particularly in boundary value problems for spheres. It is given as
(1—x2)g—%—2x%+n(n+ Dy =0 (1) where n is
given real number. In most applications, n takes integral values.
The singularities of this equation are x = £1.
Substituting ¥ = @ox™ + a;x™*! + apx™*? + - (ag # 0) in (1), we get
ag (M(m—1Dx™ 2 +¢ (m+ Dmx™ 1 +...
+[ar2( +7+2)Mm+r+ D) —{m+r)(m+7r+1)—nhn+ Dla,]x™

+ =0
Equating to zero the co-efficient lowest powers of x, i.eof x™~2, we get
a(m(m-1)=0 =m=0,1 (ag #0)
Equating to zero the co-efficient of x™~1 and x™*", we get
am+1m=290 (2)

AGom+r+2)Ym+r+1D)—{(m+r)(m+r+1)—nn+ Dla, = 0(3)
When m = 0, (2) is satisfied and therefore @1 # 0. Then (3) for 7 = 0,1,2,3 ... gives

+1 -1 (n+2

azz—’l("z—!)ao; ay = —Lont?) ;(,n da,;
ay = — (n—i).(;z—l—?)) a, = n(n—Z)(r;-:—l)(n-H‘) ao;

~-3)(n+4 ~1)(n—3)(n+2)(n+4
as = _n 5)'(2 )a3 _ (D ;('n )(n )a1; etc
Therefore two independent solutions of (1) for m = 0 are as follows:

(n+1) (n—2)(n+1)(n+3
ylzao{l_nr;! x2+nn 7;! (n )x4_.“} (4)
_ _ (n=-D(n+2) 3 (n-D(n=-3)(nA2)(n4+4) 5

Vo= {x TR 51 x } (5)

When m = 1, (2) gives that @1 = 0. Therefore (3) gives
Az = 4g = Ay = 0

+1 ~2)(n+1)(n+3
n(r;! )aoi ay = nn )(r;! Jn )aol
Thus for m = 1, we get the solution (5) again. Hence the general solution of (1) is given by

y=y1ty.

a; = — etc
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Further, it is worth to note that if n is positive even integer, then (4) terminates at the term
containing x™ and Y1 becomes a polynomial of degree n. Similarly, if n is positive odd integer, then
Y2 becomes a polynomial of degree n. Thus, whenever n is a positive integer (even or odd), the
general solution of (1) always contains a polynomial of degree n and an infinite series.

These polynomial solutions, with @& and @1 chosen properly so that the value of the polynomial
becomes one at x = 1, are called Legendre’s Polynomials of degree n and is denoted by Pn(X). The
infinite series with @o and @1 chosen properly is called Legendre’s Function of second kind and is
denoted by @n(x),

RODRIGUE’S FORMULA

Another presentation of Legendre’s Polynomials is given by

I e B
Py (x) = nl 27 dxn (x 1) (1) is known as Rodrigue’s Formula.

dv _
Proof: Let v = (x%— 1" then V1 =gz = 2nx (x> — 1)~
ie. (A—-xDv+2nxv=0 ?
Differentiating (2), n+1 times by Leibnitz’ theorem,

1
(1= x*) Vg2 + (0 + D(=20)pyq + 5 (n + Dn(=2)v,
+2n[xv, 4 + (n+ D] =0

a2 dz(vn)_ dvy) —
(1—x7) T2 2x I +n(z+1D(y,)=0

or
which is Legendre’s Equation and €%y is its solution. Also its finite series solution is B ().

an n
o 0= D @3)

Pox)=cv, =c

Putting x = 1 in equation (3) for determining the value of the constant ¢, we get
— d" — n n

1=cl = {xr—D"(x+1) }]m

= c[n! (x + )" + terms with (x — 1)and its powers],_;
1

nl2n

Substituting the value of ¢ in (3), we get eqution (1) which is known as Rodrigue’s formula.

=c.nl (2 i.e, c=

LEGENDRE’S POLYNOMIALS

By Rodrigue’s formula we have

Py(x) =1, Pi(x) =x
P@ =302 =1, Py =505 ~3x),

Py(x) = é(35x4 —30x2% + 3),
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P5(x) = 2 (63x5 — 70x% + 15x)

_ wN 1" @2n-2r)! -7
By (%) = Xr=o 2 rin—r)i(n—21)! an

N=2nor %(n—l)

In general, where 2 according as n is

even or odd.

This general expression for B, (x) in terms of sum of finite number of terms can be derived easily from

Rodrigue’s formula.
Example 29: Show that Pn(—%) = (=1)"Pp(x)

Py () = EMo(—1)2 - B2 g2

Solution: ri(n—r)i(n—2r)!

n n—1
Where N=3 or 2

Replacing x by - x, we will get

(2n—2r)!

-2 -2
r!(n—Zr)!(n—r)!(ml)n A

Py (x) = XYoo (-1)"

— (VSO 1y @n2r)!  n-2r
=1 ZT:O( D r!(n—r)!(n—Zr)!x , as (—1)2T=1

=(=D"R(x)
Example 30: Express the following in the Legendre Polynomials
(i) 503 +x (i)x®+2x2—x—-3 (iii)4x® —2x2-3x+8

1
n!2n

P(x) = D (x% - 1)"

Solution: We know
Po() = 1P, (x) = P2 () =532 = 1) P3(x) =5 (5x° - 3x)
(i)
(ii)
(i) 4x®>—2x*2-3x+8= %[21’3 (x) + 3P, (x)] — % [2P,(x) + Py(x)] — 3P, (x) + 8P (x)
=2P3(x) = 3P, () = PL(X) + Z Py (x)

GENERATING FUCTION FOR Pn(x)

A
To show that (1 — 2xt + %) Z = 30 o t" P (x)
Proof: We know that

13 135
1 e e
(1-2z)z= 1+%Z+% 22+% 73+
_ 21 41 2 61 3,
=1+ an? 2% + (202 24 z°+ (3n2 26 z" +
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1
(1-t2x-1) =1 +(m2—2!22(t(2x -0)+ (2;—2!24 (tC2x - t))z o

BBt — )T+ =l (22— )" (1)
(n—r))2 2 (nh22

The term in ¢" from the term containing "~ (2x — "™

2n-2r)! N B
- Mﬁ tTon—re (07 (2"
(2n-2r)! (=71

— 1\ n—2r _ (=1)"(2n=2r)! N =27
T ((=ry)? 22020 T pi(n=27)! (=D7t"(2x) T oang (n—-r)!(n—Zr)!t x

Collecting all terms in ¢™ which will occur in the term containing t™ (2x — ¢)™ and the proceeding

terms, we see that terms in t"

(-1 2Zn—27)! -
= 211‘\’:0 on (n—(T?!(niz??")! tnxn ar = Pn (x)tn

N=2 T l(n -1
where ¥ T2 07 3 according as n is even or odd.

1
Hence (L) can be written as (1 — 2xt +t2) 72 = ¥ t™ P, (%), which is known as generating function
of Legendre’s Polynomials.

RECURRENCE RELATION FOR Px(x)
. M+ 1Py (%) = 2Zn+ 1P, (x) — nPy_1(x),
Proof: We have the generating functions
(1-2xt +t)712 =32 P () t" (1)
Differentiate partially w.r.t.t, we get

3
=2 (1= 2xt + £2)5(=2x + 26) = N o B (x) nt" !

(1~—2xt+ tz)—%(x —t)= Z;?:O P, (x) ntn1 (2)

(1—2xt+ tz)_;(x —t)=(1=2xt +tH) Y2 o P (x)nt™ 1
(= O Troo P () " = (1= 2xt + ) T B ()t !
Comparing the coefficients of t™ from both sides, we get
X Bi(x) = Pooq (%) = (n + Py (0) = 2xnB, (x) + (n — 1P, (x)
(n+1) Pypr(x) = @n+ Dx Py (x) = nPy_1 (%)
I, NPy(x) =xP, (1) = P'pq (%),
Proof: Differentiating (1) partially w.r.t X, we obtain

3 7
—2 (= 2xt +£2) (=20 = $Eo B (0 ¢

(L= 2xt+ )77 = X0 B, (1) £ 3

Dividing (2) by (3), we get

¥—t _ Yl=gn F'n((x)lf"‘1

¢ Tom0 P ()T

(X=X B, ()t = t.ITgn B, ()t = T2 o B (%)t
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Comparing the coefficient of t™ from both sides, we get
xP, (x) = P 1 (x) = n B, (x)
. 2R+ 1) Pp(x) = P g () = P g (%),

Proof: From relation I, we have

(n+ DP1(x) = 2n+ DB, (x) —nPp_1(x)

Differentiating

w.r.tx, we get 5x3 +x = 2.%(5;\:3 —3x) + 4x = 2P;(x) + 4P; (x)

(ot DPaa (053 _ 1) 43701, #2 =2R2P,0 + A@] x=P@. 1= Py

(4) Using ) )
xP, (x) =P ,_(X° +2x% —x -3 = =[2P3(x) + 3P ()45 [2P, (%) + Po(x)] — P1(x) — Po(x)
or x =2P3(x) + $P,(x) 2P () — 2 Py ()
()

Now eliminating
(n+DP () = @n+ DB (x) + 2n + Dl B (x) + P 1 ()] —nP',_y (x) the term x5, ()

' i from (4) using
(4 DPir () = (n+ DE+ DR E) + 1+ DP 0t (¥ (5) e get

Pl (0) = @n+ DR + P g (3)
@n+ DB ) =P py1(x) =P p1(x)
IV. Pn (X) = x P\ g (%) =1 Py (),
Proof: Rewriting (4) as
(n+ 1P,
=Cn+ DR +m+DxP () +nlx =n+Dx Poao1(@)—P ()]
= @2n+ DB+ (n+Dx B, () +n2P Papi(® = ,(x)
=m+DxB )+ @*+2n+ 1P (x) V. A- X3P, (x) =1 [Py_1(x) — x Pp(x)]

Proof: From Relation 11, we have

xP, (x) = Py (x) = n By () 6)
Also from relation 1V, we have
() =2 Py (1) = 0Py () @)

Multiply equation (7) by x and subtracting form equation (6), we get
(1=xH)P, () = 1 [Ppy (1) — ¥ B, (%)]

ORTHOGONALITY OF LEGENDRE'S POLYNOMIALS

The Legendre Polynomial Pr(X) satisfy the following orthogonality property
1 0, m+*n
f P, (x). P, (x)dx = 2
-1 2n+1

, m=n

42



Proof: Both of the cases are discussed as follows:
Casellm #n
Let the Legendre polynomials P (x) and B, (x) satisfy the differential equations
A-xHP", —2xP , +m(m+ 1P, =0 (1)
(1—=x2P" , —2xP ,+nn+ 1B, =0 )
Multiplying (1) by P, (*) and (2) P (%) and then subtracting we get
1—-x3)[P .2 -P ,.P,l—-2x[P,,.B,— P ,.P,]
+mm+ 1) —n(n+ 1D]B,.B, =0
% [(1=x2)(P 1. By = P . B+ (m=n)(m+n+ 1)P, B, =0
(m =) +n+ 1Py = == [(1 = x3)(P 1. By = P . P)]
Integrating from -1 to 1 both sides

(m—m)(m +n+1) [2 P (). B()dx = —[(1 = x2)(P . By — P 5. P)I%4 = 0
S Pa(0).By(x)dx = 0

Caselllm=n

We know from generating functions that
1
(1-2xt +2)72 = Zot" P (1)(3)
Squaring both sides and integrating w.r.t. X from -1 to 1, we get

1 1 1 oo
Lo e = [ o t" Py ()] dx

(4)

1 1 L s | ! 2 3
et =[] =5 (n@ =26+ %) ~In(1+ 26+ ¢2)

Now
= ——-(n(1 =% =In(1 + £)?) = =2 (In(1 = £) = In(1 + 1))

==(n(1+ ) —In(1 - 1))

O

tZ t4 th
=214 54Tt (5)

Also S Zo PR (012dx = [ [R50 Py ()] [E20 t"Pn(x)] dx
= Y0 [, B2 (x) dx

= Y=o t*" f_ll P,*(x) dx (6)

Using (5) and (6) in equation (4), we get

4 + ] — 21010:0 th f—ll Pnz (X) dx

2n+1
Comparing the coefficient of £2" on both sides we get

1 2 2
f—l P () dx = 2n+1.

2 4
2[1+5+5 44
3 5

FOURIER LEGENDRE EXPANSION

If f(x) be a continuous function and having continuous derivatives over the interval [-1, 1], then we
can write

f(X) = Z?:O Cy Pn(x) (1)
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To determine the coefficient Cr, multiply both sides by #»(*) and integrate form -1 to 1, we get

S F0.B(dx = C, [ P2 (x) dx

(Remaining terms vanishes by the orthogonal property)
TR T on4

Cp = (n+3). 2, (. Py (x)dx 2)

The series in (1) converges uniformly in interval [-1, 1], and is known as Fourier-Legendre Expansion

of /().

' P' (0) — (—1)"(2n+1)
Example 31: Prove that (i) Pza(0) =0 and = 2+t 22n(uZ !

1
Solution: We know Xmeo t" Py (x) = (1 — 2xt + t*)™2

Differentiating with respect to 'x’, we get
, )
SR (x) = —5 (1 — 2xt + t3) 2(=2¢)

3
=t(1—2xt+t%)2

: ]
Putting x=0, 3 4P, (0) =t(1+t?)2
3 5 3 5 3 —
= t{l P 12 S o . ) S }
2 21 Y

Equating the coefficients of t2"and 2"+, we get P2, (0) =0

' 3%5%.....2n+1)
Prn1(0) = ()" =2

— o qyn (n+1)
=D 2nn122n

’ (2Zn+1)!
P2n+1(0) = (_1)11 227:1 n!z

Example 32: Prove that
(1
i)y 2n+1)(1—-2%)Py(x) = n(n+ D[P,
Ppp(X) = Ppyq(X) = 2P (X) + Py (%)
(iii)
1
Solution: We know X t" P, (x) = (1 — 2xt + t2) 2

(i)  Differentiating with respect to ‘t" and equating the coefficients of ™, we will get

(n+ DPyyi(x) = 2n+ 1)xP, (x) — nP,q(x) (1)
Now differentiating with respect to ‘x’ and using the derivative with respect t’, we get
1B, (x) = xPy (x) — P4 (%) @)

From (1) & (2), we can derive
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20+ DP(x) = Poyq (x) = Py (%) (3)

Py(x) = xPy_1 (%) + 1Py _1 (%) )
From (1) & (4) eliminate  Pr—1(x)

(n+ 1Py () + Py(x) = (2n + DxPy (x) + xPy_ (%) 5)

= (2n+ DxP,(x) + x[xP,(x) —nP,(x)]  From (4)

(1= x)P,(x) = (1 + DxP, (x) = (n+ 1Py 41 (%)
= (n+ D[xP, (%) = Ppp1 (0]

()  Eliminating Pn—1(%) from (2) & (4), we get
(1= xBP,(x) = n[Pp_y (x) — xB, (x)]
=n [Pn-1<x> — 5o (O + DPyyy (0 + Py ()]

=L — Py () = (14 1Py (1)]
@2n+ D = x*)F (0 = nn + D{Pyo1 (1) = Pyya (0}
(i) (3)—2 x(2) gives
Pa(x) = Poys () = 2xP, () + Py ()
Example 33: Using the Rodrigue’s formula, show that
S =2 L (Pu()] + nn+ DPR(x) = 0

Pn(x) = Py

2 _qyn =L = (x2 =
Solution: We know that (=D =D, V=" -1"

Now differentiating "V’ with respect to 'x’, we get
vy =2nx(x? - 1" o (x% =1V, = 2nxVor(1 — x3)V; + 2nxV =0

Differentiating (7 + 1) times, we get

(n+n

(1= xWypip + (0 + DV (—2x) + ——— T

V,(=2) + 2nxVy, 41
+(n+ 1)2n¥, =0
(A=xWyy—2x{n+1=n}, +V,{~—n(n+ 1D +2(n+1n} =0
(1= xH)Vpyp — 2xV, 4 +n(n+ DV, = 0
¢ —xz)—V — 2x— A nm+ DY, =0
But V, = D"V = 2"n! B, (x)
(1- x2) {Z”n P, ()] — Zx— [2"n! P,(x)] + n(n + 1)2"n! P,(x) = 0
(1- xz) P (x) — 2x—P x)+n(n+1P,(x)=0

Example 34: Prove that
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@ Jy Pan(0)dx =0
Gi) 1 x"P(x)dx=0 (m<n)

Solution: (i) we know (21 + 1B, (x) = Py (%) — Py (x)
(41 + DPyy (%) = Popy (¥) = Popy (%)
Integrating both sides
(4n +1) f01 Py, (0)dx = [Py 41 (x) — Pyp1 ()1}

= [Pyn41(1) = Pap—1 (1] = [P2y41(0) — P2, _1(0)]
=(1-1)-(0-0)=0

1 1 1 i
(i) f-l x™P, (x)dx = f—l meD"(xz —1)

[{me” Tx?2 -1, - f_ll mx™ 1D (x2 — 1)"dx]

Z”n'

[O mf xm-ipn—l(x2 —1)”dx]

Z”n'

= x (— 1)mf DM (x? — 1)"dx

T 2nnl

— (=)D R~ ML = 0

=
As DM l(x—1)"(x+ 1)" =0 will contain terms in  (* — 1) and (x + 1) both and hence
when x = &, the value is zero.

hn

2(x) (1 —2xh + h?%) de =5

1

Example 35: Prove that f— P
1

Solution: We know (1 —2xh + h?)7z = ¥ h™ B, (x)

[Y Px) (P (0))dx = S h™ [ P ()P (x)dx

g 02,n¢m o
- , n=m 2n+l
2n+1

Example 36: Show that

(i) f 1 XPR ()P (X)dx = 4;2" 7

. 2n(n+1)

(ii) f_l X2 Py ()P (X)dx = (2n—1)(1;:+1)(2n+3)
e 2 +1

(iii) 1(1 x2) n(x)]zd 25::1 )

(iv) _1(1 — X2)Pp(x)Pp(x)dx =0
Solution: (i) We know (1 + 1)Py41(x) = (2n + 1)xB, (x) — nP,_1(x)

xpn (x) m [(n + 1)Pn+1(x) + npn 1(%)}

fl Xpn (x)Pn—l (x)dx

= f 1” [(TL + 1)Pn+1 (X) + npn 1(x)}Pn 1(x)dx
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+1 ,1 1
= o [ Pun (P (0)dx + 5= [ Py () dix

n+1 n 2 2n
— X X —
2n+1 0+ 2n+1  2n-1 4ns—1

1
(if) We know xh, (x) = 2n+1 [+ DPpy + 1Py (6]
Changing n—»>n+1

1Py () = = [(n+ DPy2(6) + (1 + DR (X)]

and changingn » n —1

xPoy () = Gy NP () + (0 = Do ()]

1
J o, X2 Py (X)Py 1 (x)dx

= L1550+ 2P () + (0 + DB, (0] X [0 () + (n = 1P, ()]dx
= —(anl)l(znﬁ) [0 +0+nm+1)x ﬁ + 0]

_ 2n(n+1)
T @2n-1)2n+1(2n+3)

Gi) [ = D[R @1Pdx = [ (1= 2P (x). Py, (x)

= [{ = )RR,y — [, (1 = xR0} P (x)dx ]

=0~ [}}{=n(n + DB, (}dx = n(n + 1) [, P2() dx = 20

(i) L= xD)P, ()P (x)dx
= {(1 = )P PO} = [, (1 = x%)By (1)} By (x)dx
- [(o —0) + [} m@m + 1P, ()P, (%) dx] =mm+1)x0=0

Example 37: Expand the following functions in terms of Legendre’s polynomials in the interval
[1: —1]

(f) =x3+2x* —x -3 (i) f) =x*+x3 +2x2 —x -3
Solution: (i) We know f(x) = X3=o cn B (%)
1\ (1
Where “n = (n +E) 2 fGOR, ()dx
1\ (1
co=(0+E)f_l(x3+2x2—x—3)x1dx
1
1|1t x3 %2 1 4 2 7
=5[[?+2?—7‘3xﬂ_1=5[°+§—6]=§—3=—§
1
2
= 32 _y_g(35\__6__2
T o2\s 3)_3(15)_ 15~ 5

cy = (2 + %) f_ll(x3 +2x% —x — 3)%(3x2 - 1)dx
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= Ef_11[3365 —x3 4+ 6x* — 2x% — 3x3 + x — 9x? + 3]dx

=2[6x2-5-Z2+6]=3

f) = =2Py(x) =2 PL(X) + 5P, (6) + ...
(i) () =x* +x% +2x* —x =3 = ¥ ¢, B (%)
en = (n+3) 11,/ (0 pu0)dx

C0=(0+%)f_1 (x*+x3+2x2—x—-3)x1dx

12 L, 6420-90 _ 32
2[5+_“6] 2

2 15 T

o
S
Il

(1+%)f_11(x4+x3+2x2—x—3)><xdx

ci = (E_E)..Exﬂ__z
1= 27 15 T s

=2 [3x6 —x* + 3x° — x3 + 6x* — 2x% — 3x3 + x — 9x?% + 3]dx
4
5f6 2 12 4 40

=if-srs-5-6+e|=3

flx)=— Po(x)——Pl(x)+ Pz(x) +

ASSIGNMENT

1. Show that P'n(=%) = (=1)"*'P", (),
2. Evaluate the following:

W Jy Pra(0dx

(ii) f_11 x™. P, (x)dx ,
3. Express 8 Ps(x) — 8 Py(x) — 2 P,(x) + 5Py (%) in terms of polynomial of x.
Use Rodrigues formulae to obtain P3(x) and P4 (),
/2 .
5. Findthe value of Jo  cost.Ps(sint) dt,

6. Prove that

1 P, (x 22"
j‘ n( ) dX —
=1 \1-2xz+2%2 2n+1

(i)
(if) f—11 Fy (x) dx = 0 gycept when n = 0 in which case the value of the integral is 2.
ANSWERS
L
2.()  nri
i) 0
63 x°> —35x* — 70x% + 27x% + 15x + 3 3.

P3(x) = 3 (5% = 32), Py (x) = = (35x* — 302 + 3)
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4.
5.-1/8

STRUM - LIOUVILLE PROBLEMS

A differential equation of the form

[p)yT +[g() +Ar(@)]y =0 (1) is
called Strum-Liouville Equation where A is a real number.

Instead of initial conditions, this equation is usually subjected to the boundary conditions on the
interval [a, b] as

a;y(@ +ay (@) =0, Byy(b) + B,y (b) =0 @)
where @1, @2, B1, B2 are real constants such that either @1 o7 @3 are not zero and S1 o7 B2 are not zero.

The non trivial solutions of the differential equation (1) subjected to the conditions (2) exists only for
specific values of A, which values are termed as Eigen values or Characteristic values of the equation
(1). And the non trivial solution of (1) corresponding to these Eigen values are termed as Eigen

functions or Characteristic functions.

ORTHOGONALITY OF EIGEN FUNCTIONS
Two functions ¥m (%) and ¥ (*) defined on some interval [, blare said to be orthogonal on this
interval with respect to the weight function 7(x) > 0, if

b
Jy TG Y ()y (x)dx =0 for m#n
Also the norm Il |l of the function ¥ (x) is defined to be non negative square root of

b 2
1) O (0) dx. s nll = \/ [} G (9 (1)) dx
The functions which are orthogonal and having the norm unity are said to be orthonormal functions.

Theorem: If ¥Ym(X) and ¥n(X) are two eigen functions of the Strum-Liouville problem
corresponding to eigen values 4m and 4n respectively (wherem # n), then the eigen functions are
orthogonal w.r.t. the weight function 7'(X) over the interval [a, b]

Proof: Since distinct eigen values and their corresponding eigen functions are the solutions of the
Stum Liouville equation (1), so we can write it as
[PV 1 +[q(0) + 2n 7]y = 0

[Py 1+ [q() + A 7)1y = 0
Multiplying first equation by Y» and the second equation by ¥m, and then subtracting, we get
(Am - An) r(x)ymyn = Ym (r(x)ynl), = Yn (T(X)ymd,
d 7 ’
= a((r(x)yn ))"m - (7’ (x)ym )yn)
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Now integrating both sides w.r.t.x from a to b, we get
b ' '
A — ) fa T YmYndx = [(rC)Y, JVm — ()Y, )yn]g

=10y By () = Y ()72 (D] = 7@ ¥ (@Y (@) = ¥ (@3 (@]

The R.H.S. will vanish if the boundary conditions are of one of the followings forms:
l. y(a) =y(b) =0
. yY@=y®»=0
. @ y@+ay(@=0,pyb)+s,y ()=0

where @1, @2, B1, B2 are real constants such that either @1 0T a; are not zero and B1 07 B2 are not zero.

Thus in each of the three cases we get

b
J T Ymyndx =0, (m#n)

which shows that the eigen functions ¥m (%) and¥» (*) are orthogonal w.r.t. the weight function 7'(x)
over the interval [a, b]

Example 38: For Strum-Liouville problem Y + 4y =0, y(0) = 0, y(1) = 0 find the eigen
functions.

Solution: ForA= ~V?, the general solution of the equation is given by
yx)=Cre* +Cy e

Using the above mentioned boundary conditions we get €1 = C2 = 0, Hence ¥(x) = 0is not an eigen
function.

Also for 4 = )’2, the general solution of the equation is given by

y(x) = Cy cosyx + Cy sinyx

Using ¥(0) = 0, we get ;=0
Using ¥(r) = 0, we get C;sinyr=0 => sinymr =0
YT =Nnm => y=n n=41, +2, +3,...

Thus the eigen values are 4 = 0,1,4,9, ... and taking €2 = 1, we obtain the eigen functions as

V. (x) =sinnx, n=0,1,2, ...

ASSIGNMENT
Find the eigen values of each of the following Stum Liouville
problemsand " 4+ 3y =0, y(0) =0, y(l) = 0 Pprove their orthogonality:

iy ¥y +Ay=0,y0)=0, y()= 0

iy Y +y =0, y(m) =y(-n), y @ =y (-m)
1. Show that the eigen values of the boundary value problem ¥ + 4y =0, ¥(0) =0, y(m) +
y () = 0 satisfies VA + tanVim = 0,
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ANSWERS
1.(i)
(i)
(iii)

sin%, n=0,1,2,..

nnx
cos—, n = 0,12, ..

1,sinx,cosx,sin2x,cos2x, ...
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UNIT - IV

PARTIAL DIFFERENTIAL EQUATIONS

Definition:- PDE

A partial differential equation (or briefly a PDE) is a mathematical
equation that involves two or more independent variables and an unknown
function of two or more variables (depend on those variables) and partial

derivatives of the unknown function with respect to the independent variables.

Applications:-

Partial differential equations are used to mathematically formulate, and thus
aid the solution of, physical and other problems involving functions of several
variables, such as the propagation of heat or sound, fluid flow, elasticity,

electrostatics, electrodynamics, etc.

Notations:

We use the following notations to denote partial derivatives

90z 9z 0%z _ 3z _, _t_azz_z
P=5x = & q—ay—zy, F=oxz ~ & S_axay_ Xyr " gyz W
Examples:-
1. % = Z—; ,  (u-dependent variable; x, y — independent variables)
ou\3 = au _ . . . .

2. (&) + 7y 0, (u-dependent variable; x,y — independent variables)
3. x‘;—z + y‘;—; + % =0, (u-dependentvariable; x, y and t — independent
variables)
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Definition:- ORDER OF PDE
derivative involved in the given PDE. The order of a partial differential

equation is the order of the highest

Example:-
0%u _ 0du . .. .
1.§ =% is a second order equation in two variables.

3
2. (@) + 8= 0, is a first order equation in two variables

ox ady
du du . du . . . . .
3. Xo—+ ya—y +o= 0,is afirst order equation in three variables.

Definition:- PARTICULAR SOLUTION
A solution (or a particular solution) to a partial differential equation is a

function that solves the equation.

Definition:- GENERAL SOLUTION
A solution is called general if it contains all particular solutions of the

PDE equation concerned.

LINEAR PARTIAL DIFFERENTIAL EQUATION
If the dependent variable and its partial derivatives occur in the first

degree, then we say that the partial differential equation is linear.

Examples:-
0%u _ du .
1. oy (Linear PDE)

ou\3 . au _ . . .
2. (&) + 7y 0, (NON-Linear PDE, since degree is three ux)
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Jdu du . Ou _ .
3. x&+ya—y+a—0, (Linear PDE)

Formation of Partial Differential Equations
Partial differential equations can be obtained by the elimination of

arbitrary constants or by the elimination of arbitrary functions.

By the Elimination of Arbitrary Constants
Let us consider the function

¢(x,y,z,a,b) =0 (1)
where a & b are arbitrary constants

Differentiating equation (1) partially w.r.t x &y, we get

d¢ 09 _
ax P =0 2)
0¢ e _
oy 795, =0 3)

Eliminating a and b from equations (1), (2) and (3), we get a partial

differential equation of the first order of the form f (x,y,z,p,q) = 0

Problem:-0 1

Eliminate the arbitrary constants a & b from z = ax + by + ab
Solution:-

Consider z=ax+hy+ab (D

Differentiating (1) partially w.rt x &y, we get

%:a e, p=a(?2
0z __ . _
6_y_b l.e.,, g=b 3)

Using (2) & (3) in (1), wegetz = px +qy + pq
which is the required partial differential equation.
3|Page



Problem:-0 2
Form the partial differential equation by eliminating the arbitrary constants
aand b from z = (x2 +a?) (y? + b?)
Solution:-
Given z = (x?+ a?) (y? + b?) (1)
Differentiating (1) partially w.rt x &y, we get
p = 2x(y*+b?)

=>p/2x=(y* + b?)—(2)

q =2y (x*+a%)
=>q/2y=(x* + a’)----(3)
Substituting the values of p and q in (1), we get 4xyz = pq

which is the required partial differential equation.

Problem:-0 3

Find the partial differential equation of the family of spheres of radius one
whose center lie in the xy - plane.

Solution:-

The equation of the sphere is given by

(x-a)+ (y - b)*+ z2=1 (1)

Differentiating (1) partially w.rtx &y, we get

oz" o1" oz -
= —=nz
OX 07 OX

2(x —a) + 2zp = 0-—-(2)

2(y — b) +2zq9 = 0----(3)

From these equations we obtain
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X—a=-zp (2

y—b=-zq (3)
Using (2) and (3) in (1), we get

22p*+z%g*+z2=1 (or) 22(p*+*+1) =1

Problem:-04
2 2
Eliminate the arbitrary constants a, b & ¢ from :—2 + % +
partial differential equation.
Solution:-
. ..o x2 o y2 72
The given equation IS+ +5= 1 (D

Differentiating (1) partially w.rtx &y, we get

2x 2zp
@t T
2y 2zq
bz "z ~ 0

Therefore, we get

X L ZP _

y o, 29 _

S+5=0 (3)

Again differentiating (2) partially w.r.t x, we get
=+ (5)@+p) =0 (4)

Multiplying (4) by x, we get
X . XZr = p?x _
2t ata=0

From (2), we have

—zp xzr p3x

P + + P =

0
c2 c2 c2

(or)—zp + xzr + p’x =0
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By the Elimination of Arbitrary Functions

Let uand v be any two functions of x, y, zand ¢(u, v) = 0, where ¢ is an
arbitrary function. This relation can be expressed as

u=f(v) (D

Differentiating (1) partially w.rt x & y and eliminating the arbitrary
functions from these relations, we get a partial differential equation of the

first order of the form f(x,y,z,p,q) = 0.

Problem:-05

Obtain the partial differential equation by eliminating f from
z=(x+y) f(x* —y?)

Solution:-

Let us now consider the equation

z=(x+y) f(x* —y?) (1)
Differentiating (1) partially w.rt x &y, we get
p=Kx+y)f'(x*-y?).2x+f(x*-y?)

q=Kx+y)f' (x*-y?).(-2y) +f(x*-y?)

These equations can be written as

p- T3 y2) = (x+y) /(x> y?).2x (2)

q-F (- y2) = (x+y) F'(x*- y?). (-2y) 3)
p—fx?—y?*) _ _x

Hence, we get T y?) ;

ie., py — yf(x* —y?) = —gx + xf(x* —y?)
ie., py + gx = (x +y) f(x* —y?)
Therefore, we have by(1), py +gx = z
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Problem:- 06

Form the partial differential equation by eliminating the arbitrary
functionffrom z=evf(x+y)
Solution:-
Consider z=-¢eYf(x+y) D
Differentiating (1) partially w.rt x &y, we get
p=evf' (x+y)(1+0)=ev f* (x +y)-----(2)
q=evf'(x+y)(0+1) +f(x +y). e ----(3)
Hence, we have
(3)-(2)=>q-p=z
q+p=z

Problem:- 07
Form the PDE by eliminating f&¢p from z = f (x +ay) + ¢ (x —ay)
Solution:-
Consider z= f(x+ay)+ ¢ (x—ay) (1)
Differentiating (1) partially w.rtx &y, we get
p=f"(x+ay) (1+0)+ ¢' (x-ay)(1-0)=f" (x +tay) + @' (x-ay) (2)
q=f"(x+ay)(0+a) + ¢’ (x—-ay)(0-a) (3)
Differentiating (2) & (3) again partially w.rt x &y, we get
r=f"(x+tay)(1+0) + ¢" (x —ay)(1+0)=f"(x+ay) + ¢" (x —ay)----(4)
t=f"(x+ay) (O+ta)at ¢" (x —ay)(0-a)(-a)= f "(x+ay) a*+ ¢" (x — ay)a*---(5)
Sub (4) in (5)
e, t=aXf"(x+ay)+o"(x-y)}

(or) t=azr

EXERCISES
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1. Form the partial differential equation by eliminating the arbitrary
constantsa &b from the following equations.

() z=ax +by
(ii) xz;yz +z_2: 1

(iii) z=ax+by+ a2z +b?2

(iv) ax2+byz+cz2=1

(v) z=a2x+b2y+ab

2. Find the PDE of the family of spheres of radius 1 having their centers lie on
the xy plane {Hint: (x—a)2 + (y - b)2+ z2 =1}

3. Find the PDE of all spheres whose center lie on the (i) z axis (ii)x-axis
Form the partial differential equations by eliminating the arbitrary functions
in the following cases.

(i) z=f(x+y)

(i) z=f(x2-y?)

(i) z="1(x2+y2+z2)

(iv) f(xyz,x+y+2z)=0

(v) z=x+y+(xy)

(Vi) z=xy +f(x2+y?)

W 2=1(2)

(vi) f(xy+2z2,x+y+2)=0

(vii) z=f (x+1iy) +f (x—1y) (X)

(xi) z=1(x3+2y) +g(x3-2y)
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TYPES OF SOLUTIONS OF PDE

Complete Integral

A solution containing as many arbitrary constants as there are
independent variables is called a complete integral.

I.e if the partial differential equations contain only two independent

variables so that the complete integral will have two constants.
Particular Integral

A solution obtained by giving particular values to the arbitrary

constants is called a particular integral.

Singular Integral

Letf (xy,z,p,g)=0 (D
be the partial differential equation whose complete integral is
¢ (Xy,z,ab)=0 2)

where a and b are arbitrary constants.

Differentiating (2) partially w.r.t. a and b, we obtain

o9 _
-0 (3)
¢ _
and b 0 4)

The elimination of a and b from the equations (2), (3) and (4), when it

exists, is called the singular integral of (1).

General Integral
In the complete integral (2), put b = F(a), we get
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@(xy.za,F(a))=0 (5)
Differentiating (2), partially w.r.t. a, we get

90 L 09y _
aa+abF(a) =0 (6)
The eliminate of a between (5) and (6), if it exists, is called the general

integral of (1).

SOLUTION OF FIRST ORDER PDE

The first order partial differential equation can be written as
_ _%andg=2
f(x,y,z,p,q) = 0, wherep = ™ andqg = ™

TYPE- I
f(p,q) =0.i.e, equations containing p and g only.
Suppose that z = ax + by +c is a solution of the equation f(p,q) = O,
where f (a,b)=0.
Solving this for b, we get b = F (a).
Hence the complete integral is z=ax + F(a)y+ ¢ (@)
Now, the singular integral is obtained by eliminating a & ¢ between
z=ax+yF(@)+cO0=x+yF'(a)
0=1.
The last equation being absurd, the singular integral does not exist in this
case.
To obtain the general integral, let us take ¢ = @(a).
Then,z=ax+F(a) y +¢(a)(2)
Differentiating (2) partially w.r.t. a, we get
0=x+F'(a).y+t¢'(a)(3)
The eliminate of a between (2) and (3), we get the general integral
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Problem:-0 8

Solvepq = 2

Solution:-
The given PDEispg— 2=0
The given equation is of the form f (p,gq) =0
The solution is z = ax + by +c, whereab = 2.

To find complete integral

Solving, b =§

The complete integral is z = ax + Sy +C (1)
To find singular integral
Differentiating (1) partially w.r.t ¢, we get 0 = 1,which is absurd.
Hence, there is no singular integral.

To find the general integral,
putc = @(a)in (1), weget z=ax+ Sy + ()

Differentiating partially w.r.t a, we get

2
0=x-5y+¢'@

Eliminating a between these equations gives the general integral.

Problem :-09

Solvepg+p+q =0

Solution:-

The given equation is of the form f(p,q) = 0.

The solutionis z = ax + by + ¢c,whereab+a+b = 0.

To find complete integral

i - __a
Solving,weget b= —

Hence the complete Integral is z = ax — %ﬂy +c (1)
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To find the singular integral
Differentiating (1) partially w.r.t.c, weget0=1.
The above equation being absurd, there is no singular integral for the given
partial differential equation.
To find the general integral
Put c = ¢(a) in (1), we have
— ax —
z=ax— ==y + (a) 2)
Differentiating (2) partially w.r.t a, we get
a(0+1)—(1+a).1 ,
T @@

-1 ,
0=x-mt 0@ O

Eliminating a between (2) and (3) gives the general integral.

O0=x—]

Problem:-10

Solvep? + g% = npq

Solution:-

The given PDE is p? + gq? — npg=0 ---(1)

It is of the form f(p,q)=0

The solution of this equation is z = ax + by + ¢, where a? + b? = nab.
To find complete integral

b? — nab +a? =0

Solving, we get

n++vn¢ -4
b=a<—2 )

ni\/nz—4) y+c (1)

Hence the complete integral is z = ax + a(
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To find singular integral

Differentiating (1) partially w.r.t ¢, we get 0 = 1, which is absurd.
Therefore, there is no singular integral for the given equation.
To find the general Integral,

Put c = ¢(a), we get

z=ax+ a(ni ;2_4))/"' ¢(a),

n+vnz—4

Differentiating partially w.rta, we have 0 = x + ( . )y + '(a)

The eliminate of a between these equations gives the general integral.

TYPE-1I
Equations of the form f(x,p,q) = 0,0r f(y,p,q) = 0 and f(z,p,q) =
0.
i.e, one of the variables x, y, z occurs explicitly.
(i) Let us consider the equation f(x,p,q) = 0.

Since z is a function of x and y, we have

q _c’)zd +c’)zd
2= %™ ay y

dz = pdx + qdy----(1) gives the solution of given equation.
Substitute g = a, the given equation takes the form f(x,p,a) = 0
Solving, weget p = @(x,a).

Substitute the value of p,g in (1), we get

dz = @(x,a)dx + ady.

Integrating,

z=[@(xa)dx+ay+Db

which is a complete Integral.

The singular and general integrals are found in the usual way.
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(i) Let us consider the equation f(y,p,q) = 0.
Substitute p = ain given equation, the equation becomes f(y,a,q) = 0
Solving, we get g = ¢(y, a).
Substitute the value of p,g in (1), we get
dz = adx + @(y,a)dy.
Integrating on both sides,
z=ax+ [¢(y,a)dy+b,
which is a complete Integral.
The singular and general integrals are found in the usual way.
(iii) Let us consider the equation f(z, p,q) = 0.
Substitute q = ap. in given equation, the equation becomes f(z,p,ap) = 0
Solving, we get p = ©(z,a).
Substitute p,q in (1), we get
dz = @(z,a)dx +a ¢@(z,a)dy
dz
¢(z,)
Integrating,

e, = dx + ady

dz __
f(p(zya)—x+ay+b

Which is complete integral.

The singular and general integrals are found in the usual way.

Problem:- 11

Find the complete integral of g = xp + p?
Solution:-

Givengq=xp+p*> - €))
This is of the form f(x,p,q) = 0.
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The complete solution is given by dz = pdx+qgdy-----(2)
Putq=ain (1), we get

(1)=>a=xp +p’

ie, p*’+xp—a=0

—x=+,/(x2+4a)

2

Substitute p, g in (2), we get
_—x+,/(x?+4a)
dz——2

p:

dx+ady

Integrating on both sides, we get

x | 0¢+22(a)?)
Jdz=[{-J*————]dx+afdy+C

2
We know that I\/x2+b2dx:§\/x2+b2+%In‘x+\/x2+b2
2
z= —%i%(gx/4a+x2 +? In |x+\/4a+x2|) +ay +C.

Which is the complete integral.

Note

Singular Integral

Differentiate complete integral p.w.r.t C, we get 0=1, there is no singular
integral.

General Solution

Let C=¢(a), substitute in complete integral

z= —ﬁii(gx/4a+x2+? In |x+\/4a+x2|)+ay+®(a).

4

Differentiate the above p.w.r.t 'a’, and eliminate 'a’' between the equation, we

get the general integral.
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Problem:- 12

Solve q = p?y

Solution:-

Given g=p2y----(1)

This is of the form f(y,p,q) =0

The complete solution is given by dz = pdx + gdy----(2)
put p=a.in (1)

Therefore, the given equation becomes q = a?y.
Substitute p,q in (2), we get

dz = adx + a’y dy

Integrating on both sides, we get
sz=ajdx+azjydy+c

z=ax+a2y2/2+C

Which is the complete solution.

Note

Singular Integral

Differentiate complete integral p.w.r.t C, we get 0=1, there is no singular
integral.

General Solution

Let C=¢(a), substitute in complete integral
z=ax+a2y2/2+@(a).

Differentiate the above p.w.r.t a,
O=x+ay2+@'(a)

Eliminate 'a’ between the equation, we get the general integral.
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Problem:- 13

Solve 9(p?z+g?) = 4

Solution:-

Given 9(p?z + g?) = 4----(1)

This is of the form f(z,p,q) =0

The complete solution is given by dz=pdx+qgdy----(2)
put g = ap, the given equation becomes

9(p?z + a?p?) =4

p2(z+a2)=4/9

p2=4/9(z+a?)

Therefore, p==

3vz+a?
_ 2a
and 0=+ 70
Substitute p,q in (2), we get
2 2a
dz dx £ dy

=+
3Vz + a? 3Vz +a?
Multiplying both sides by vz + a2, we get

vz +a?dz = i%dxt%ady,

Integrate on both sides, we get

We know that j (ax+b)“dx=%
(z+a%)2 _ iEXigay+C

3/2 3 3
(z+a?)32=x+ay +3C/2.
Note

Singular Integral

Differentiate complete integral p.w.r.t C, we get 0=3/2, there is no singular
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integral.

General Solution

Let C=¢(a), substitute in complete integral

(z+a2)32=x+ay +(3/2)0(a).

Differentiate the above p.w.r.t a, and eliminate 'a' between the equation, we

get the general integral.

TYPE - 111

f,(x, p) = f2(y, a).

I.e., equations in which ‘z’ is absent and the variables are separable.
Let us assume as a trivial solution that

f(x,p) = g(y,q) = a (say).

Solving for p and g, we get

p = F(x,a)and q = G(y,a).

= %2y 4 0
But dz= ade+aydy

Hence dz = pdx + qdy

dz = F(x,a)dx + G(y, a) dy

Therefore, z = [F(x,a) dx + [G(y,a) dy + b,

which is the complete integral of the given equation containing two constants
aandb.

The singular and general integrals are found in the usual way.
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Problem:-14

Find the complete integral of pg = xy
Solution:-

Given pg=xy

The given equation can be written as

X |©
O I

It is of the form f(x,p)=g(y,q)
The complete solution is given by dz=pdx+qgdy----(2)

P_Vy_

i a (say)

Therefore, 5 —a = p=ax
Y — =Y

and ” a = ==

Substitute p,q value in (2), we get
dz = ax dx + %dy,

which on integration gives

ax? . y? te
7 = — —_—
2 2a
Problem:- 15

Find the complete integral of p2+g2=x2+y?
Solution:-

Given p2+ g2 =x2 +y2----(1)

The given equation can be written as p2- x2 = y2— g2
It is of the form f(x,p)=g(y,q)

The complete solution is given by dz=pdx+qgdy----(2)
p>—Xx? = y?>—q? = a* (say)
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p2— x2= a2 implies p==+VaZ+x2
y2>— (2= a2 implies  q==,/y? —a?
Substitute p,g in (2), we get

dz = +Va? + x2dx £ \/y? — a2dy

Integrating, we get

z== E\/x2 + a2 +£sin h-1 (5)
—\2 2 a

2

Y ez~ cosn-1 (Y
(2\/)’2 a2 5-cosh (a)>+C

I+

TYPE - IV (Clairaut’s form)

Equation of the type z = px + qy + f (p, @) = (1)is known as Clairaut’s form.
Differentiating (1) partially w.r.tx and y, we get

p=a and q=bh.

Therefore, the complete integral is given by

z = ax + by + f(a,b).

Problem:- 16

Solve z = px + qy + pq

Solution:-

Given z = px + qy + pg----(1)

The given equation is in Clairaut’s form z=px+qy+f(p,q)
Puttingp=aand q=bin (1), we have

z=ax + by+ab (2
which is the complete integral.

To find the singular integral

Differentiating (2) partially w.rtaandb, we get
0 = x +b;
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0=y +a
Therefore, we have
a=-y
and b = —x.
Substituting the values of a & b in (2), we get

Z= —Xy — Xy + Xy

or z+xy=0,
which is the singular integral.
To get the general integral,
putb = (@) in (1).
Then z = ax + @(a)y + a ¢(a) 3)
Differentiating (3) partially w.r.t a, we have
0=x+¢@y+ag (@) +qe) (4)
Eliminating a between (3) and (4), we get the general integral.

Problem:- 17
Find the complete and singular solutions of z = px + gy + /1 + p? + g2

Solution:-

Given z = px + qy + /1 + p2 + q2-—-(1)

Itis in Clairaut’s form z=px+qy+f(p,q)

Sub p=a and g=b in (1), the complete integral is given by
z=ax+ by +V1+aZ+hb? (2)

To obtain the singular integral,

Differentiating (1) partially w.rta &b.

— a _ b
Then,0 =x+7==5s  and 0=Yy* e
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Therefore, X= —— 3
_ -b
" VitaZ+b? (4)

Squaring (3) & (4) and adding, we get

a?+b? _1+a?+b?%-1

2 2 —
=+ = =
X y 1+a%?+b?  1+aZ+b?
1
2 2 —
X*+y*=1—-———
Y 1+ a2+ Db?
_ =1- XZ + 2
1+ a% +Db? &"+y9)
w2 _y2—=__1
Now, 1-—x°-y FCIRE:
e, 1+a2+b?=—
1—-x2—y?
1
Therefore, V1 +a2 + b2 = ——— (4)
1—x2—y?

Using (4) in (2) & (3), we get

X =—a,1—x2%—y?2 and y = —by1—-x2—y?

Hence, 4= —— and b=—X

1-x2—y? 1-x2-y?

Substituting the values of a&b in (1), we get

L _XZ B y2 . 1
\/1_Xz_y2 \/1_Xz_y2 \/1_Xz_y2
_1-x*—y?
7=
1—x2—y?

z=y1-x%2-y?

x? +y* + 7°=1, which is the singular integral.
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EXERCISES

Solve the following Equations
1. pg=k

2. p+q=pq

3. J/p+./q=x

4. p = y*q?

5 Z:p2+q2

6. ptg=x+y

7. p%z2+0g2=1

8. Z=px+qy—2\/ﬁ

9. {z-(px+qy)}>=c?+p?+q?
10.z=px+qy + p?g?

EQUATIONS REDUCIBLE TO THE STANDARD FORMS
Sometimes, it is possible to have non - linear partial differential
equations of the first order which do not belong to any of the four standard
forms discussed earlier. By using the suitable substitution, we can reduce
them into linear PDE and in any one of the four types, then it can be solved
using usual procedure and by back substitution, obtain the solution of given

non linear PDE.

Type (i):

Equations of the form F(x™p,y"q) =0 or F(z,x™p,y"q) =0.
Case(i):

Ifm = landn # 1, thenputx!™ = Xandyl™ =,
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__ 0z _ 0z 0X _ 0z —m
NOW’p_ax_ax'ax_ax(l m)x

Therefore, x™p = %(1 —m) = (1 —m)P, where P = %

Similarly, y"q= (1 —-n)Q,whereQ = Z—f{

Hence, the given equation takes the form F(P,Q) = 0 (or) F(z,P,Q) = 0.
Case(ii):

Ifm=21andn=1thenputlogx=Xandlogy=Y.

_ 9z _ 0z 0X_ 021

Now, T 9x 98X ax  9Xx

_ 9z _
Therefore, Xp=—"= P
Similarly, yq = Q.
Problem:-18

Find the complete solution of x4p2 + y2zq = 222

Solution:-

Given x4p2 + y2zq = 222

The given equation can be expressed as (x2p)? + (y2q)z = 2z2----(1)
It is of the form f(z, x™p, ynq)=0, wherem=2,n=2

PutX=x!"m=x"landy =yl =y"!

_oz_a X o(x™)

p=—=——= =—Xx°P
OX OX OX OX
x’p=-P
oz oroY _o(y" .
oy oY oy oy
y’a=-Q
Substitute the above in (1), we have
P2—Qz=222 (2)

This equation is of the form f (z, P,Q) = 0.
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The complete solution is given by dz=PdX+QdY-----(3)
LetQ = aPin (2), we have

P2—aPz =272
P2—azP -2z2=0
o —(—az) £./(-za)% — 4(1)(—2z2)
B 2(1)
_az+./(za)? + 822)
B 2
az +zva? + 8
P =
2
Hence Q= a(ai :2+3)

Substitute P, Q in (3), we have

axva+38 ax+va?+38
dz=(————)zdX+ a| ———— ) zdY
2 2
Divide the above equation by z, we have

io dz _ (ai\/az+8
. " - 2

) (dX + adY)

Integrate on both sides

dz _ (ai\/az+8
2

ic. ) [(dX + adY)

Z

(ai\/az +8
logz = —

Substitute X=x1and Y=y-1
(a ++aZ + 8) 1 a
logz = | ———— (_ ) YC

)(X+aY)+C

2 X §

which is the complete solution.
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Problem- 19

Find the complete solution of x2p2 + y2q2 = z2
Solution:-

Given x2p2 +y2q2 = z2

The given equation can be written as (xp)2 + (yq)? = z2

(1)

This equation is of the form f (z, x™p,y"q) = 0. wherem=1,n=1,

PutX=logxandY =logy.
_a_aax _Lollegx) 1,

b= X OX ox OX X
=>xp =P.

oz o0z oY d(lo 1
T R Tk
=>yq=Q
Hence the given equation becomes
P2+ Q=22 2

This equation is of the form F(z,P,Q) = 0.

The complete solution is given by dz=PdX+QdY-----(3)
Put Q = aP. in equation (2) becomes,

P2+ 32 pP2=722

(1+a2)pP2=122

Z

Vi+a?
_  az
and 0= A
Sub p,q in (3),we get
d L X+ —2dy
7=
Vi+val = Vi+a?

ie,(V1+a?) % = dX + adY
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Integrate on both sides
ie.(VI+aZ) [Z=[dX+a[dY
(V1+a?)logz=X+aY+C

Sub X=log x and Y=log y

(V1 +a?)logz = logx + alogy + C,

which is the complete solution.

Type (ii):

Equations of the form F(zXp, zXq) = 0 (or) F(x,z¥p) = G(y, z*q).
Case (i):

If k# 1, putZ = zK+1,

0z _ 0z 0z _ k 07 _ k
Now ax_az'ax_(k+l)z'ax_(k+1)2p
kp=_L 92
Therefore, z%p = 1
imi kg=_1 92
Similarly, z*q= 1y
Case (ii):

Ifk=-1,putZ=logz.

Now 0Z _ 0Z 0z _ 1
! 6X_62'6X_Zp
. 9z 1
imilarl —=-q.
Similarly, oy 20

Problem:-20

Solve z4g2-z2p =1

Solution:-

Given z4g2-z2p =1

The given equation can also be written as (z29)2- (z2p) =1
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It is of the form f(z* p, zk q)=0, where k=2
Putting Z = z k*1 = 73 we get

P:az_az oz oz’

=== =377

OX 07 0x o1 P P
=>P/3=2"p

0z o0z o1 o7° )
Q oy 0z oy azq a
=>Q/3=z"q

Hence the given equation reduces to

2
@ -5

e, Q2-3P-9=0,
which is of the form F(P, Q) = 0.
Hence its complete solution is given by

Z=ax+by+c, whereb?-3a-9=0.

Solving for b,
b=+y3a+9

Hence the complete solution is
Z=ax+ (V3a+9)y+c

Sub Z=z3

z° =ax+(V3a+9)y+c

EXERCISES

Solve the following equations.
1. X2p2 + y2p2 = 72

2.22 (p?+g?) = x2 +y2
3.72(pPx*+g?) =1
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4. 2x4p?-yzq-3z2=0
5. p2 + X2y2q2 = X2 72
6.x2p +y?q =22
7.x2/p+y2/q=1z
8.22(p?-0?) =1
9.z2(p2/x2+0g2/y?) =1
10.pX + g2y =z.

LAGRANGE’S LINEAR EQUATION:

Differential equations of the form P(x,y,z)p + Q(X,y,2)q = R(X,y,2) —
— — (1) are linear in p and g, also it is called Lagranges Linear differential
equation.
To solve this equation,
let us consider the equations u = a and v = b, where a, b are arbitrary
constants and u, v are functions of x, y, z.
Since u is a constant, we have
du=0 2

But u as a function of x, y, z,

q _6udx+aud +audz

4T ox ay Y5z

Comparing (1) and (2), we have

Jdu Jdu Jdu _

&dx+a—ydy+gd2—0 (3)

similarly, Zdx+Zdy +2Zdz =0 4
arty, ox dy y 0z Z= (4)

By cross-multiplication, we have

dx _ dy dz
dudv oOudv Qdudv odudv  oudv duov

0z dy 0yo0z 0x 0z 0z 0x dy0x  0x0y




dx _ dy _ dz
(or) PTQ R (5)

Equations (5) represent a pair of simultaneous equations which are of the
first order and of first degree.
Therefore, the two solutions of (5) are u=aand v =b. Thus,

¢(u,Vv) = 0is the required solution of(1).

Note:

To solve the Lagrange’s equation, we have to form the subsidiary or auxiliary

equations
dc _dy _ dz
P Q R

which can be solved either by the method of grouping (For easy problem) or

by the method of multipliers(For difficult problem).

METHOD OF GROUPING
Problem :-21
Find the general solution of px + qy = z.
Solution:-
Given px+qy=z

It is of the form Pp+gQ=R, Here P=x, Q=y, R=z

. . dx_dy_d
The subsidiary equations is — = = = =
P Q R
o8 by _
X y z

First solution

dx _ dy
Xy
Integrating,

log x =log y + l0g C1, take exponential
30|Page



X=C1y

X

y

Second solution
dy _ dz

y Z
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Integrating
logy = log z + logc,
y =CyZ

y _
Z o CZ
Hence the required general solution is

@ Gg) = 0, where ¢ is arbitrary function

Problem:- 22

Solveptanx+qtany=tanz

Solution:-

Givenptanx+qtany=tanz

It is of the form Pp+Qq=R here P=tan x, Q=tany , R=tanz

The subsidiary equations is % = %y = %

dx dy dz
tanx tany tanz

First solution
dx _ dy
tanx  tany

e, cotxdx = cotydy

Integrating, log sinx = log siny + log ¢,

e, sinx = c,siny
sinx _

Therefore, — =,
siny

Second solution
dy dz

tany tanz
e, cotydy = cotzdz

Integrating, log siny = log sinz + log ¢,
siny = c,sinz

. sin
e, —y =C,
sinz
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Hence the general solution is

@ (%:%) = 0, where ois arbitrary
Method of Multiplier
Problem:-23
Solve(y—2)p+(z—x)g=x—Yy
Solution:-

Given (y —2)p+(z—x)g=x—-Yy
It is of the form Pp + Qq =R, here P=y-z, Q=z-X, R=x-y

The subsidiary equations is % = %y = %

d d d
ax _ A _Z—a(say)

y-z  z-X  X-y

dx=a(y-z), dy=a(z-x), dz=a(x-y)

First solution

Consider the multiplier dx+dy+dz

dx+dy+dz=a(y-z)+a(z-x)+a(x-y)
=a{y-z+z-x+x-y}=a.0=0

dx+dy+dz=0

Integrate on both sides.

[dx+dy+dz=.c1

X+ty+z=c; (1)

Second solution

consider multiplier xdx+ydy+zdz

xdx+ydy+zdz=xa(y-z)+ya(z-x)+za(x-y)

=a(xy-xz+yz-yx+zx-zy)=0
xdx+ydy+zdz=0
Integrating on both sides
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X2 +Yy2+ 72=2C,=C3 (2)
Hence from (1) and (2), the general solution is

(X +y+2zx?+y?+2z%) =0, where @ is arbitrary function

Problem:- 24

Find the general solution of (mz — ny)p + (nx — 1z2)q = ly — mx
Solution:-

Given (mz — ny)p + (nx — 12)g = ly — mx

It is of the form Pp+Qq=R, here P=mz-ny, Q=nx-lz, R=ly-mx

. - . . dx d dz
The subsidiary equations is > = Ey ==
. dx. _ dy _ dz _
€ mz-ny nx-lz ly—mx_a(say)

dx=a(mz-ny), dy=a(nx-1z), dz=a(ly-mx)

First solution

xdx+ydy+zdz=ax(mz-ny)+ya(nx-1z)+za(ly-mx)
=a{xmz-xny+ynx-ylz+zly-zmx}=0

xdx+ydy+zdz=0

Integrate on both sides

[ xdx + ydy + zdz = ¢4

2 2 2

LR A
2 2 2
X2 +Yy2+ 72=2¢,=C> (D

Second solution

Consider the multiplier ldx+mdy+ndz

ldx+mdy+ndz=la(mz-ny)+ma(nx-1z)+na(ly-mx)
=0

Integrate on both sides
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[ 1dx + mdy + ndz =cs
IXx+my+nz=c, (2)
Hence, the required general solution is

@(x? + y? + 22 Ix+ my + nz) = 0, where ¢ is arbitrary function.

Problem:-25

Solve (x2-y2-2z2) p + 2xy q = 2xz.
Solution:-

Given (x2-y2-2z2) p + 2xy q = 2xz.

It is of the form Pp+Qqg=R, here P=x2-y2-72, Q=2xy, R=2xz

The subsidiary equation is x_dy_dz
p Q R
dx dy dz

X2 —y2 — 72 :2xy:2xz

I.e
First solution (Method of gouping)

Taking the last two ratios,

dy dz

2xy  2xz

e, -2
y Z

Integrate on both sides

[ENE
y z

logy=1logz+logc,

y = €2

i.e.,%z C1 (1)

Second solution (Method of Multiplier)

b — & _ yisay)--—(2)

X2—y2— 72 - 2Xy  2XZ

dx=a(x2-y2-z2), dy=2axy, dz=2axz
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consider the multiplier xdx+ydy+zdz

xdx+ydy+zdz=a{x(x2-y2-z2)+2xy2+2xz2}
=ax{x2-y2-z2+2y2+2z72}=ax(x2+y2+z2)

(xdx+ydy+zdz)/x(x2+y2+z2) =a

Comparing with the last ratio, we get

xdx+ydy+zdz __ dz
x(x%+ y?+ z2) T 2xz

[using equation (2)]

2xdx+2ydy+2zdz __ dz
X2+ y?+ 2?2 -

Since dx2=2xdx, dy?=2ydy, dz2=2zdz

dx? + dy? + dz* _ dz

X2+ y2 + 72 z
d(x? +y%+2z%) dz

X2+ y2+ 722 7
ds dz

~ == where s=x2+y2+z2
log s=logz+logc>

log s=logzc:

log (x2+y2 +7z2) = logz ¢,
X2+ y2+ 722 =,z

=C 3)

2 2 2
. X*t+ytz
e, ———

Z

24924 2
y xX2+y%+z%\ _
z’ z )_O’

From (1) and (3), the general solution is given by ¢ (

where ¢ is arbitrary function.

EXERCISES

Solve the following PDE
1. px2+qy2=z2

2. pyz+ qzx=xy
3.Xp-yq =y>x2

4.y2zp + X2zq =y2X
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5.z (x-y) = px*-qy?
6.(a-x)p+(b-y)g=c-z
7.(y2zp) /x+xzq=y2
8.(y2+z2) p—-xyq+xz=0

9. x?p+y*q=(x+y)z

10.p —q = log(x+y)

11. (xz +yz)p + (Xz—yz)q = x2+y2
12. (y-2)p—-(2x+y)q=2x +z

PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH
CONSTANTCOEFFICIENTS
Homogeneous Linear Equations with constant Coefficients.

A homogeneous linear partial differential equation of the nt order is of

the form ¢y 22 + ¢, —2— + .+ ¢, 22 = F(x, ) (1)
0 gxn 1 oxn-19y Ngyn Yy

Wherecg, cq,...,C, are constants and F is a function of x and y. It is
homogeneous because all its terms contain derivatives of the same order.

Equation (1) can be expressed as
(COD” + ch”_lD' + ot an'n) z=F(XY)
or f(D,D") z = F(x,y) (2)

0 _ 9 _
&:Danday_D

Where
As in the case of ordinary linear equations with constant coefficients the
complete solution of (1) consists of two parts, namely, the complementary
function and the particular integral.

The complementary function is the complete solution off(D,D")z = 0 —(3),
Which must contain n arbitrary functions as the degree of the polynomial
f(D,D"). The particular integral is the particular solution of equation (2).
Finding the complementary function
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Let us now consider the equation f(D,D )z = F (x, )

The auxiliary equation of (3) is obtained by replacing D by D' by 1.

com"+c¢cym™t+..4+¢c, =0

(4)

Solving equation (4) for m, we get n roots. Depending upon the nature of the

roots, the Complementary function is written as given below:

Roots of the auxiliaryNature of the

Complementary function(C.F)

equation roots

m1,M2,M3, ....... , Mp distinct roots fi(y+mix)+f2(y+mox)
+......+fa(y+mnX)

mg = mx = mjtwo equalfi(y+mux)+xfo(y+max) + fa(y+msx)

M3,Ma,....,Mn roots o +fn (y+mnXx)

mi=my=... =mn=m @all equal roots fi(y+mx)+xfa(y+mx) + x2f3(y+mx)

+....

XLy (y+mx)

Finding the particular Integral

Consider the equation f(D,D )z = F (x,y).

1

Now, the P.I is given by m F(Xy)

Case (i):
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When F (x,y) = e™*by

P | eax+ by

~f(D,D)
Replacing D by a and D'by b, we have

P.l1= ﬁe"‘x*by,where f(a,b) # 0

Case (ii) :
When F(x,y) = sin(ax + by)(or) cos (ax + by)

P.l= sin(ax + by)(or) cos (ax + by)

f(DZ,DD',D'2>
Replacing D2 =-a2, DD2 = -ab and D' = -b2, we get

P.|= sin(ax + hy)(or) cos (ax + hy),

_r
f(-a2—ab,—b?)

where f(—a?,—ab, —b?) # 0

Case (iii) :
When F(x,y) = x™y",

P.l= —~xMy" = [f(D, D]~ IxMy"
©.0) y" = [K( y
Expand[f(D, D']~* in ascending powers of D or D' and operate on x™y"term by
term.
Case (iv):

When F(X,y) is any function of x and y.

P.1 = —<F(x,)

o5)

Resolvef(DD,)into partial fractions considering f(D,D) as a function of D

alone.

Then operate each partial fraction on F(X,y) in such a way that
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1
D—mD

F(x,y) = [ F(x,c — mx)dx,

where c is replaced by y + mx after integration

Problem:-26

Solve(D3-3D2D' + 4D'3) z = ex+2y

Solution:-

The auxiliary equation ism=m3-3m2+4=0
The rootsarem=-122

Therefore, the C.F is fi(y-x) + f2 (y+ 2x) + xfz (y+2x).

P.l= em,y - (Replace D by 1 and D'by?2)
D3-3D?D +4D
ex+2y
= 1-3(1)(2)+4(2)3
ex+2y
P1==7

Hence, the solutionisz=C.F. +P.I

ie, z=fi(y-x) +fa(y+2x) + x fa(y+2x) +¥

Problem:- 27

Solve (D2-4DD’ +4 D2) z = cos (X — 2y)

Solution:-

The auxiliary equation is m?—4m + 4 = 0 Solving, we get m = 2,2.
Therefore, the C.F is fi(y+2x) + xf2(y+2x).

1
~ Pl = , - C0S (X — 2Y)
D? — 4DD +4D
Replacing D2 by -1, DD by 2 and D2 by —4, we have
1
P.1 cos (X — 2y)

T (CD) - 42) + 4(-4)
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_cos(x—2y)

B 25

cos(x—2y)
25

Hence, the solution is z = f1(y+2x) +xf2(y+2x) —

Problem:- 28

Solve (D%~ 2DD’) z = x3y + e>x
Solution:-

The auxiliary equation is m2—2m = 0.
Solving, we get m = 0,2.

Hence the C.Fis f1 (y) + f2 (y+2x).

3y

Ply=——2
17 p2_2pp
=———(x%)
2 2D
0*(1-%)

1 2p\ 1
=5(1-3)
1 2D’ 4D’ ;
B R R L)

2D’ 4D"?

1 5 3 3
ZF(X Y)"'F(X y) + D? (x7y) + -

_i(xs )+E(x3)+i(0)+'"
~ D2 Y)+35 D2

= 5 (Cy) + = ()

X%y X

~ 20 60

e5x

3
P. 1

P.l, (Replace D by 5 and D" by0)

"~ D2-2DD
e5x

- 25
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X3

5
Hence, the solution is Z = fi(y) + f2 (y+2x) + % + X4

60

Problem:-29
! /2
Solve (D2 +DD' - 6D" ) z = ycosx

Solution:-
The auxiliary equation is m2 + m -6 =0.
Therefore, m=-32.

Hence the C.Fis f;(y — 3x) + fo (y + 2X).
Y COSX
2 r 12
D“+DD —6D
_ Y COSX
(D+3D)(D-2D)
1 1
- r r C
(D+3D)(D—2D)y

P.l=

(D+3D) f(c — 2x)cosx dx, wherey = ¢ — 2x

(D 30 ) f(c — 2x) d(sinx)

(D 3D) [(c — 2x)(sinx) — (—2)(—cosx)]

1

B (D+3D)

= [[(c + 3x)sinx — 2cosx]dx, wherey = ¢ + 3

[ysinx — 2cosx]

= f(c+3x) d(—cosx)—chosx dx

= (c + 3x)(—cosx) — (3)(—sinx) — 2sinx
= —yCo0s X + sin X

Hence the complete solution is
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z = f;(y — 3x) + f,(y + 2x) — ycos X + sin X

Problem:-30
Solver—-4s+4t=e 2ty

Solution:-

0%z 0%z 0%z 2x+y

iven ionis ——4 +4—=
Given equation is W ox 3y o e

ie, (D?—4DD +4D")z=e?

The auxiliary equation is m2— 4m + 4 =0. Therefore, m =22

Hence the C.Fis f; (y + 2x) + xf,(y + 2x)

e2x+y
P.l1=

2 _ r 12
D°—4DD +4D

! 12
Since D — 4DD + 4D for D=2 and D' = 1, we have to apply the general rule.
e2x+y

P.I= : :
(D—2D)(D - 2D)
1 1

— _ _ g2xty
(D—-2D)(D-2D)

= (D_—lzD,)f e2**+¢=2X dx, where y = ¢ — 2x

1
~ (0-20) J edx

1
=—,e°.x
(D—2D)

!
(D—2D)

X ey+2x

[ x €=+ dx where y = ¢ —2x.

=fxecdx



X2ey+2x
2
Hence the complete solution is

X2ey+2x

z =11 (y +2x) + xfp(y + 2x) +

NON - HOMOGENEOUS LINEAREQUATIONS

Let us consider the partial differential equation

f(D,D)z = F(x,y) (1)

If f(D, D) is not homogeneous, then (1) is a non-homogeneous linear partial
differential equation. Here also, the complete solution =C.F + P.l.

The methods for finding the Particular Integrals are the same as those for
homogeneous linear equations.

But for finding the C.F, we have to factorize f(D, D) into factors of the form
D-mD —c.

Consider now the equation

(D-mD —c)z=0 2)

This equation can be expressed as

p—mqg=cz (3,

which is in Lagrangian form.

The subsidiary equations are

dx_ dy _dz
1_—m_cz (4)

The solutions of (4) arey + mx = aand z = be®.

Taking b = f(a), we get z = be®™ f(y + mx) as the solution of (2).

Note:
If [(D-mD —c)(D—myD —¢,) .. (D—myD —c,)]z=0
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is the partial differential equation, then its complete solution is

z = e (y + myx) +e2f(y + myx) + -+ + e, (y + mpx)

In the case of repeated factors, the equation (D — mnD' — cn)z:O has a
complete solution

z = e%f (y + mx) + xe%f(y + mx) + -+ + x""1ef, (y + mx)

Problem:-31

Solve(D—D —1)(D—D —2)z = ¥

Solution:-

Here, m; = 1m, = 1,¢; = 1,¢c, = 2

Therefore, the C.F is e*f;(y + x) + e*f,(y + X)
a2y

P.I= : :
(D-D -1)(D-D -2)

PUtD=2,D = —1.

e2x—y
T @-CED-DE@-(-D-2)
e2x—y
2

e2x—y

Hence the solution is z = e*f, (y + x) + eZf,(y + X) +

Problem:- 32

Solve(D?> — DD + D' — 1)z = cos(x + 2y)
Solution:-

The given equation can be rewritten as
(D—D +1)(D — 1)z = cos(x + 2y)

Herem; = 1m, = 0,¢c;, = =1¢c, =1
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Therefore, the C.F is e7*f; (y + x) + e*f,(y)

1
P.l= - - cos(x + 2y)
(D>-DD +D —1) d

PutD?*=—-1,DD = -2,D = -4

1
= - cos(x + 2
-1-(-2)+D -1 ( y)

1
= ﬁcos(x + 2y)

_sin(x + 2y)
B 2

Hence the solutionis z = e7*f; (y + x) + e*f,(y) + sin(x+2y)

Problem:- 33
Solve[(D+D —1)(D+ 2D — 3)]z = &*¥ + 4 + 3x + 6y
Solution:-

Here m; =-1m, =-2,¢c;, =1,¢c, =3

Hence the C.F is e*f, (y — x) + e3*f,(y — 2x)

ex+2y
P. Iy

:(D+D’—1)(D+2D'—3)
PutD=1D =2

ex+2y
T(@+2-1)(1+4-3)
ex+2y
P.l; =
174
1
P.1, (4 + 3x + 6Y)

:(D+D’—1)(D+2D'—3)
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1

3[-0+0) (12

(4 + 3x + 6Y)

-1 D+2D'\7}
[1-(D+D)] (1- 3 (4 + 3x + 6Y)

:%[l+(D+D')+(D+D')2+---] _1+<D+2D’>+<D+2DI>2+---](4

Wl

3 3

+ 3x + 6Y)
1 4 5 .
=S|@+3@+2(@)..|@+3x+ey)

1 4 5
=3|@+ax+ren+3@+3 )

Plb=x+2y+6

Hence the complete solution is
X+2y

z= e (y —x) + e, (y — 2x) + +X+2y+6

EXERCISES
Solve the following homogeneous Equations.

9%z 9%z 0%z
—Sto——6—
ox oxay ay

0%z _2 0%z
ox>  oxay
3. (D2+3DD' +2D?%)z=x+Yy

4. (D2~ DD+ 2D?) z = xy + e*. cos hy

_ ey +e™Y ety + X7y
Hint: e* coshy = ex( > ) =\—=

5. (D3-7DD2-6D3) z = sin (x+2y) + e2xty
47|Page

= cos(2x +y)

= sin X cos 2y




6. (D2+4DD-5D2) z = 3e2 + sin (X — 2y)
7. (D2- DD'- 30D2) z = xy + ebx+y
8. (D?-4D2) z = cos2x. cos3y
9. (D>-DD-2D?) z=(y-1)ex
10. 4r +12s + 9t = e3¢
Solve the following non — homogeneous equations.
1.(2DD' + D2-3D") z = 3 cos(3x — 2y)
2.(D2+DD +D-1)z=ex
3. r-s+p=x2+y2
4. (D>-2DD' + D'2- 3D + 3D’ + 2)z = (e3¢ + 2e2Y)2
5. (D>-D2-3D+3D)z=xy+7.
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LECTURE NOTES
UNIT-V
APPLICATION PARTIAL DIFFERENTIAL EQUATIONS
INTRODUCTION

In many real life problem which is represented in ordinary or partial
differential equation. We required a solution which satisfies some specified
conditions called boundary conditions.

Any differential equation with these boundary condition is called
boundary value problem.

In case of PDE we get solution involved in arbitrary constants and
arbitrary function. Hence it is difficult for us to adjust these conditions and
function so as to get an optimal solution satisfying the boundary conditions.
To over come these we adopt method of separation of variables for solving

linear PDE as it satisfy all or some boundary conditions.

CLASSIFICATION OF PARTIAL DIFFERENTIAL
EQUATIONS OF SECOND ORDER

The general form of linear partial differential equation of second

- - 2 2 2
orderisgivenby a0U, g 0u cO0U [ M o 6 L (1)
OX oxoy oy

(i.e) Au, +Bu, +Cu, +Du, +Eu, +Fu=0,where A B, C, D, E, F are general

functions of x and y.

ELLIPTIC EQUATION

The equation 424, g0 0% pou au . o ofsecond order is
ox? oxoy  oy® ox oy

called elliptic at (x,y) if B2-4AC<0.
[where A, B, C, D, E, F are functions of x and y]



Example:

(i) Laplace equation in two dimension 2 2 _,,
ox° oy

A=1,B=0,C=1
B2-4AC=02-4(1)(1)=-4<0
Therefore the given equation is elliptic
(ii) Poisson equation 2°u, 2°u _ .

ox? oy
A=1,B=0,C=1
B2-4AC=02-4(1)(1)=-4<0

Therefore the given equation is elliptic

PARABOLIC EQUATION

The equation A2, g0  c0u pdu cou . oof second order is
ox? oxoy oy’ ox oy

called parabolic at (x,y) if B2-4AC=0.
[where A, B, C, D, E, F are functions of x and y]

Example:-

One dimension heat flow equation 2°U _ a%“
ox? t

u_ v

ox? ot

A=1, B=0, C=0,

B2-4AC=02-4(1)(0)=0

Therefore the given equation is parabolic

HYPERBOLIC EQUATION

The equation A2, g0V 0 pau cau o ofsecond order is
ox? oxoy oy’ ox oy

called hyperbolic at (x,y) if B2-4AC>0.



[where A, B, C, D, E, F are functions of x and y]

Example:-
One dimensional wave equation 2’V _,2°u
ox? o ot?
jedu_ o _,
ox? o at?
A=1,B=0, C=-a

B2-4AC=02-4(1)(-a)=4a>0

Therefore the given equation is hyperbolic

Problem:-01

Classify the following equation ,2°u, 2°u _,
ox®  oat?

Solution:-

- 2 2
Given c 20U U _,

2 2

ox® ot

A=x, B=0, C=1

B2-4AC=02-4(x)(1)=-4x

If -4x<0, i.e 4x>0, this implies x>0, then given equation is elliptic

If -4x=0, i.e 4x=0, this implies x=0, then given equation is parabolic

If -4x>0, i.e 4x<0, this implies x<0, then given equation is hyperbolic.

Problem:-02

Classify the following equation x*f, + (1-y?*)f, =0, where -1<y<l and
—0 < X <O

Solution

Given x*f, +(1-y*)f, =0, where -1<y<l and - <x<w

A=x2, B=0, C=1-y2

B2-4AC=02-4(x2)(1-y2)=-4x2(1-y2)<0



Therefore the given equation is elliptic except x=0

when x=0, then B2-4AC=0, therefore the given equation is parabolic.

Problem:-03

Classify the following equation x f, +yf =0, where x>0, y>0
Solution

Given x f, +yf,, =0, where x>0, y>0

A=x, B=0, C=y

B2-4AC=02-4(x)(y)=-4xy<0

Therefore the given equation is elliptic.

Problem:-04

Classify the following equation f, —2f, =0, where x>0, y>0
Solution

Given f,-2f, =0, where x>0, y>0

A=1,B=-2,C=0

B2-4AC=(-2)2-4(1)(0)=4>0

Therefore the given equation is hyperbolic.

Problem:-05

Classify the following equation f,, -2f, + f,, =0, where x>0, y>0
Solution

Given f,-2f +f, =0, where x>0,y>0

A=1,B=-2,C=1

B2-4AC=(-2)2-4(1)(1)=0

Therefore the given equation is parabolic.



Problem:-06

Classify the following equation f,, +2f +4f, =0, where x>0, y>0
Solution

Given f, +2f +4f, =0, where x>0, y>0

A=1,B=2,C=4

B2-4AC=(2)2-4(1)(4)=-12<0

Therefore the given equation is elliptic.

Problem:-07
o°u , d%u  du

Classify the nature of the following equation = +2 =
ox* T oxoy oy’
Solution:-
The given equation is du, , 0 2% 0 o D
ox*  oxoy oy’

We know that the general form of linear second order partial

differential equation is givenby ~ z2U g0 o0 [ gl g,
x: . oaxdy oy

By comparing equations (1) and (2) we get the following A=1, B=2, C=1,
D=0, E=0, F=0.
Now we calculate B2-4AC=(2)2-4(1)(1)=0 for all values of x and y.
Therefore the given equation (1) is parabolic at all points of xand'y.
In other wards we can say that equation (1) represents parabolic

equation over the XY-plane.

Problem:-08

Classify the nature of the following equation x*f_ +(@1-y?*)f, =0
yy

Solution:-

The given equation isx*f, + 1-y*)f, =0 ... (D



We know that the general form of linear second order partial differential

. . . 2 2 2
equationisgivenby A2, gt cOf pd N ko ... (2)
OX Ooxoy oy OX oy

By comparing equations (1) and (2) we get the following A=x2, B=0, C=1-y?,
D=0, E=0, F=0.

Now we calculate B2-4AC=(0)2-4(x2)(1-y2)=4x2(y2-1).

Since the B2-4AC value is not just a number here, it involves variables
x and y. So we have to consider the following case to classify the nature of
the equation.
(1) Suppose if we assume that B2-4AC<0

=>4x2(y2-1)<0, clearly 4, x2 in this product are always positive.

Therefore y2-1 must be negative number, (i.e) y2-1<0

=>y2<], (i.e) -1<y<l.

Thus B2-4AC<0, only when -1<y<1 and x # 0(Since when x=0, we get
B2-4AC=0)

Hence equation (1) represent elliptic equation in the region where x
#0and -1<y<1.
(i1) Suppose if we assume that B2-4AC=0

=>4x2(y2-1)=0, clearly x=0 (or) y2-1=0.

(i.e) x=0, and y=+1, y=-1.

Thus B2-4AC=0, only when x=0, y=-1,y=1

Hence equation (1) represent parabolic equation when (x,y) lies on
the lines x=0, y=-1 and y=1.
(111) Suppose if we assume that B2-4AC>0

=>4x2(y2-1)>0, clearly 4, x2 in this product are always positive.

Therefore y2-1 must be positive number, (i.e) y2-1>0

=>y?>] (i.e) -o<y<-1land 1<y<wo.

Thus B2-4AC>0, only when -« <y<-1 and 1<y<« and x = 0(Since
when x=0, we get B2-4AC=0)



Hence equation (1) represent hyperbolic equation in the region -«

<y<-1 and 1<y<w.where x= 0.

Problem:-09
Classify the nature of the following equation
Uy +4U,, +(X* +4y*)u,, =sin(x+y)
Solution:-
The given equationis u,, +4u,, +(x* +4y*)u,, =sin(x+y).....(1)

We know that the general form of linear second order partial differential

- - . 2 2 2
equationisgivenby %" g0 f [ cO T pd g o ... (2)
OX oxoy oy X oy

By comparing equations (1) and (2) we get the following A=1, B=4,
C=x2+4y2 D=0, E=0, F=0.

Now calculate B2-4AC=(4)2-4(1)(x2+4 y2)=16-4x2-16yz2.

Since the B2-4AC value is not just a number here, it involves variables
x and y. So we have to consider the following case to classify the nature of
the equation.
(1) Suppose if we assume that B2-4AC<0

=>16-4x2-16y2<0, To find (x,y) which satisfies this condition, we
proceed as follow.

=>16<4x2+16y?

=>1<(4x2+16y2)/16, (i.e) 1< x2/4+y2/1

2 2

=X ¥
4

Thus B2-4AC<0 , only when X4+y1 o1

2

Hence equation (1) represent elliptic equation in the region X{+VT>1.



(i1) Suppose if we assume that B2-4AC=0
=>16-4x2-16y2=0, To find (x,y) which satisfies this condition, we proceed
as follow.

=>16=4x2+16Yy?

=>1=(4x2+16y?)/16, (i.e) 1=x2/4+y2/1

2
:>L+L:1
4 1

Thus B2-4AC=0, only when X4+y1 1
Hence equation (1) represent parabolic equation in the region ’j+y12=1-

(111) Suppose if we assume that B2-4AC>0

=>16-4x2-16y2>0, To find (x,y) which satisfies this condition, we
proceed as follow.

=>16>4x2+16Yy?

=>1>(4x2+16y2)/16, (i.e) 1> x2/4+y2/1

==X ¥ g
4 1

Thus B2-4AC>0, only when x* . ¥* _;
4 1

Hence equation (1) represent hyperbolic equation in the region j+y12<1.

EXERCISE
Classify the nature of the following partial differential equations
1. @+ x)u, —2(x+2)u,, +(x+3)u, =0
2. xu, +yu, =0, x>0,y>0
3. f,—2f, =0,
4. f, +2f, +4f, =0,

5. f,—2f, +f, =0.



METHOD OF SEPARATION OF VARIABLES

Let Z be dependent variable on x & y, where x & y are independent
variables.

We assume the solution to be the product of two variable function,
one function in x alone and another in y alone.

Thus the solution of PDE is converted to solution of ODE.

Problem:-1
Using the method of separation of variables solveg—u = 2%+ uwhere
X

u(x,0)=6e-3x
Solution:-
Given M =2 M L (1)

OX ot
Here u is a function x and t
Let u=X(x)T(t)-------- (2) be the solution of the given differential equation,

where X is a function of x only and T is function t only.

Differentiate (2) partially w.r.t x and t, we get

u_
OX

a_
ot

Sub (2),(3) and (4) in (1), we get
X' T=2 XT "+XT
e X' T=X(2T'+T)

g — (4)

Separating the variables , we get

X 2T +T

X

= K (constant)



Xk

X

X —KX =0
Solution
OI—X:Kx
dx
d—X:de

Integrating on both sides, we get
Log X=Kx+log a

X:er+Ioga

X=eKxa

X=aekx

2T +T
T

K

2T +T =KT
2T =KT -T
T =T(K-1)/2
Solution

dT
—=(K-1T/2
g = (KD

dT
— = (K -1)/2dt
T = (K-

Log T=(K-1)t/2+logb

T=e(K-1)t/2+logb

T=beK-D/2

Therefore u=XT

u= aekx pe(K-nr/2

u(x,t)=aberxe-Hv2__.

Putting t=0 in (5) we get
u(x,0)=abekX--------- (6)
But u(x,0)=6e-3%------ (7)
From (6) and (7),we get
ab=6, K=-3------ (8)
Sub (8) in (5), we get
u(x,t)=6e-3xe(-Hv/2
:68-3Xe-2t
u(x,t)=6e-(3x+29

Which is the required solution.

Problem:-02




0z 0z

Using the method of separation of variable solve x§—3y— =0

Solution
0z 0z

Given 2X = —3y 2= =0 -mm-mm-

OX oy

Here z is a function x and y

oy

Let z=X(X)Y(y)-------- (1) be the solution of the given differential equation,

where X is a function of x only and Y is function y only.

Differentiate (2) partially w.r.t x and y, we get

P _xv& EEo Xy 2
OX oy

Sub (2) in (A), we get
2xX "Y-3y XY '=0
i.e 2xX 'Y=3yXY"

Separating the variables , we get

XY _ (constant)
X Y

2xX
X

=K

2xX —KX =0

(2xD - K)X =0 D'=d/dx
Solution

This is an ODE with variable
coefficient

Sub x=ez =>z=log X

xD=D", where D'=d/dz

(2D'-K)X=0
2d—X = KX
dz

3yY =KY

(3yD - K)Y = 0where D=d/dy
Solution

This is an ODE with variable

coefficient

Sub y=ez=>z=logy

yD=D', where D'=d/dz

(3D'-K)Y =0

3d—Y = KY
dz




Zd—X = Kdz 3d—Y = Kdz

Y
Integrating on both sides Integrating on both sides
2logX=Kz+c 3Log Y=Kz+d
logX=Kz/2+c/2 logY=Kz/3+b/3
X:e(K/2)z+c/2 Y:eKz/3+b/3
X=e(K/2)logx @c/2 Y=eKz/3 gh/3
X=xK2C; Y= Cae(K/3)logy
X= Caxk/2 Y= Coy(K/3)

Therefore u=XY
u= Clxk/Z Czy(K/3)
u(X’y): Cl C2 xk/2 y(K/3)

Which is the required solution.

Problem:-3

Using the method of separation of variables solveZ—u = 4%“

X

where u(0,y)=8e-3

Solution:-
Given™ - (1)
ox oy

Here u is a function x and t
Let u=X(x)Y(y)-------- (2) be the solution of the given differential equation,
where X is a function of x only and Y is function y only.

Differentiate (2) partially w.r.t x and y, we get
ou




Sub (3) and (4) in (1), we get
X'Y=4 XY

Separating the variables , we get

Xk (constant)

X Y

X _k A _k

X Y

X —KX =0 4Y —KY =0
Solution Solution
d_X: KX 4d—Y: KY
dx dy

dX

~ = Kdx 40\'(—Y= Kdy

Integrating on both sides, we get
Log X=Kx+log a

X=gKx+log a

X=eKxa

X=aekx

4Log Y=Ky+logb
logY4=Ky+logb
Y4=gKy+logb
Y4=eKyb
Y=e(K/4)yp1/4

Y=eK/4)yc, where c=b1/4

Therefore u=XT
u= aekx ce(K/4)y
u(x,t)=acexer/4y- -
Putting x=0 in (5) we get
u(0,y)=ace®/4)y-—-----
But u(0,y)=8e3 (7)
From (6) and (7),we get
ac=8, K (8)
Sub (8) in (5), we get

u (X,t) =8e-12xa(-12/4)y




:8e-12Xe'3y
u (X,t) :8e-(12x+3y)

Which is the required solution.

ONE DIMENSIONAL WAVE EQUATION
Consider the string is stretched and fastened to two points | apart.
Let T denotes the tension, m denoted the mass of the string.
The one dimensional wave equation is given by

2 2
a—l::cza—l: where ¢? _T
ot OX m

The possible solutions are given by

(i) (CrePx+Coe-PX)(CaecPt+Caecrt)

(i) (cscos px +cs sin px) (c7 cos cpt +Cg Sin cpt)

(iii) (cox+c10)(Cr1t+C12)

We have to select the suitable solution which is consistent with
physical nature of the problem , as we are dealing with problem on
vibrations, y must be a periodic function of x and t. Hence their solution
must involve trigonometric function, Therefore the best suitable solution
for wave analysis is solution (ii).

l.e u(x,t)=(cscos px +cs sin px) (c7 cos cpt +cg sin cpt)

Note

The boundary conditions are
() u(0,t)denotes displacement (or vibration) at x=0 at any time t.

(i) u(l,t) denotes the displacement (or vibration) at x=I at any time t.

The Initial conditions are

(i) u (x,0) denotes the initial shape of the string at time t=0.

(iv) STU at time t=0., it is the initial velocity of the problem.



Almost in all the problems related to one dimensional wave equation
two boundary conditions are zero .
Only one initial condition will be given in the problem, the other is

assumed to be zero.

SOLUTION OF WAVE EQUATION BY
THE METHOD SEPARATION OF VARIABLE

2 2
We know that one dimensional wave equation is oy _ a’ L2 — (1)
ot? Ox?

let y=y(X,t)=X(X) T (t)------- (2) be the solution of the given equation , where
X is a function of 'x" only and T is a function of 't' only.

Differentiate (2) partially w.r.t'x"and't', two times, we get

2 2
9 _ x»1 and &Y

— — XT"
ox? ot?

Substituting these values in equation (1), we get

XT"=azX"T
), G
X aT K(say)

By separating the variable

£ =K T =K

X a’T
X"-KX=0----- 3) T"-Ka?T=0 -------- (4)
(D2-K)X=0 (D2-Ka?)T=0

The equations (3) and (4) are ordinary differential equation, the
solution of which depends on the values of K are three cases arises.
Case(i)

Let K be positive, i.e K=p2 {Here p2is always positive whether p is +ve or -

ve}




(3)=>X"-p2X=0

(D2-p%)X=0

The auxiliary equation is M2-p2=0
M=+p,-p

P.1=0

X=C1eP*+CoePX ----- (5)

(4)=>T"-p?a2T=0

(D2-a2 p2)X=0

The auxiliary equation is M2-a2p2=0
M=+ap,-ap

P.1=0

T=Czeart+Cye-apt--mm--- (6)

y(X,t)=( C1ePx+Coe-PX)( C3eart+C4e-art)

Case(ii)

Let K be a negative, i.e K=-p2 {Here p? is always positive whether p is +ve
or -ve}

(3)=>X"+p2X=0 (4)=>T"+p2a2T=0

(D2+p2)X=0 (D2+a2 p2)X=0

The auxiliary equation is M2+p2=0 The auxiliary equation is M2+a2p2=0
M=+ip,-ip M=+iap,-iap

X=Cscospx+CeSinpx ~ ----- (7) T=C-cospat+Cgsinpat------- (8)

Substitute equation (7) and (8) in (2), we get

y(x,t)=( Cacospx+Cssinpx)( Czcospat+Cgsinpat)

Case(iii)

Let K=0

(3)=>X"=0 (4)=>T"=0
D2X=0 D2T=0

The auxiliary equation is M2=0
M=0,0
X=(Cox+C10)e0X ----- 9

The auxiliary equation is M2=0
M=0,0
T=(C11t+C12)e0t------- (10)

substitute equation (9) and (10) in (2), we get

y(X,t)=( Cox+C10)( C11t+C12)




Thus depending upon the value of K, the various possible solution of the
wave equation are
y(x,t)=( C1ePx+CoeP¥)( C3e2Pt+CseaPt)------- (11)
y(x,t)=( Cacospx+Cssinpx)( Czcospat+Cgsinpat)------- (12)
Y(X,t)=( Cox+C10)( C11t+C12)------- (13)
Now let us choose the solution which satisfy the boundary conditions of the
given problem.

In general, in the problems of vibration of strings the two boundary
or end conditions are y(0,t)=0 and y(l,t)=0 (always fixed), because at the
ends x=0 and x=I, the string is fixed.

Hence to apply the above two boundary condition in the above
solution, we have to select the correct one which is suitable for our

problem.

(D) Consider the solution (11)

y(X,t)=( C1eP*+CoePX)( Cze2Pt+Cye-art) ---(11)
Apply the condition y(0,t)=0 in (11)

sub x=01in (11)

y(0,t)=( C1e9+C2e0) ( Caeart+C4e-art)

0=( C1+C2)( C3eart+Cye-aprt)

0=( C1+C2)-----(A) ( Caeart+Caeart js not equal to zero)
Apply the condition y(I,t)=0in (11)

sub x=lin (11)

y(I,t)=( C1eP+CoePh)( Czeart+Cye-art)

0=( C1er+CoePl) ------ (B) ( Caeart+Cye-art s not equal to zero)
Solving (A), (B), we get

C1=0 and C>=0

Substituting in (11), we get y(x,t)=0.



(I1) Consider the solution (13)
Y(X,£)=( Cox+C10)( C11t+C12)--(13)
Apply the condition y(0,t)=0 in (13)
sub x=01in (13)

y(0,£)=( Co.0+C10)( C11t+C12)
0=(C10)( C11t+C12)

0= C10----(D) ( C11t+C12 is non zero)
Apply the condition y(I,t)=0 in (13)

sub x=1in (13)

y(1,t)=( Col+C10)( C11t+C12)

0=(Col)( C11t+C12) (C10=0)

0=Col ( C11t+C121s non zero)

0=Co-----(E) (lis non zero)

Substituting (D) and (E) in (13), we get
y(x,£)=0 ,which is again a trivial solution
therefore (13) is also not the correct solution
Hence the correct solution is

y(x,t)=( Cacospx+Cssinpx)( Czcospat+Cgsinpat)

Note:-

Simply for the vibration of string problem y must be periodic

function of x and t. So we choose the solution which contains the

trigonometric function.
y(x,t)=( Cacospx+Cssinpx)( Czcospat+Cgsinpat)

Here sin and cos are periodic functions.



Boundary Value Problem
The boundary value problem has conditions specified at the extremes
("boundaries”) of the independent variables in the given differential
equation.
EXAMPLE:-
y''+ay'+by=c, with y(t)=d, y'(s)=e, assume that x defined on [t,s]
Herey is dependent variable and x is independent variable.
The conditions y(t)=d, y'(s)=e are specified at the extremes namely sand t.

Therefore it is a boundary value problem.

Initial Value Problem

The initial value problem has all conditions specified at the same
value (that value is the lower boundary of the domain, thus the term
“initial" value) of the independent variables in the given differential
equation.
EXAMPLE:-
y''+ay'+by=c, with y(t)=d, y'(t)=e, assume that x defined on [t,s]
Herey is dependent variable and x is independent variable.
The conditions y(t)=d, y'(t)=e are specified at the same value t of
independent variable x.

Therefore it is a initial value problem.

In a differential equation, we get general solution which contains
arbitrary constants and then we determine these constants from the given
initial values. This type of problems are called initial value problem.

A solution of DE which satisfies some specified conditions at the

boundaries are called boundary conditions.



Any D.E together with these boundary conditions are called boundary

value problem.

Problem:-01

A string is stretched and fastened to two points | apart. Motion is

started by displacing the string in the form y=a sin (%) from which itis

released at time t=0. Show that the displacement of any point at a distance
i .. s TIX mct
x from one end at time t is given by y(x,t)=a sin (T) CcoS (I_)

Solution:-

2 2
i i . T
The one dimensional wave equation is a—u:cza—u where ¢ = — --(1
g ot? m

X2
Boundary conditions are
y(0,t)=0------(2)

y (I,t)=0-----(3)
Initial conditions are

3]0 o

ot
y(x,0)=asin(|ﬁ) ------ (5)

The solution of equation (1) is given by
y (X, t) = (cicos px +cz sin px) (c3 cos cpt +c4 sincpt)  ------- (6)
Apply boundary condition (2) in equation (6), we have
I.e Substitute x=0 in the equation (6), we have
y (0,t)=(cicos 0+ cz2 sin 0) (c3 cos cpt + casSin cpt)
0 =(c1 +0) (c3 cos cpt +c4 sin cpt) [ using the equation (2) ]
0 =(c1) (c3coscpt +casincpt)
[since tis a variable, therefore c7 cos cpt +cg sin cpt = 0]

0=c:



Substitute the value of c¢s in the equation (6), we have
y (x,t) = (0. cos px +cz sin px) (c3 cos cpt +c4 sin cpt)
y (X, t) =czsin px (c3 cos cpt +c4 sin cpt) -------- (7)
Apply boundary condition (3) in the equation (7), we have
I.e Substitute x=I in the equation (7), we have
y (I,t)=c2sinpl (c3cos cpt +ca sin cpt)
0 = cz sin pl (c3 cos cpt +c4 sin cpt) [using the equation (3) ]

0 =c2sinpl [sincetisavariable, therefore cz cos cpt +casincpt = 0]

O=sin pl [ 1fc2=0,theny (x,t) =0, therefore C2isnin
zero]

sinnz =sin pl [ we know that, sinnz =0, forall n=1,2,3.....]

nz =pl foralln=1,23.....

nw

- =p, foralln=1,23.....

Substitute the value of p in equation (7), we have

y(Xx,t)=czsin nl—”x (cscos cnl—”t +C4 SIN cnl—”t) forall n=1, 2, 3,.....

Apply initial condition (4) in the equation (8), we have
Let us first differentiate equation (8) partially with respect to t, we
have

0 . N« 0 cnrx 0 . _chr
— X,t)=c2SIn —Xx(C3 —c0S —t+Cq4 —SIN——t
HY (X )=c X (G | 45 SN0

forall n=1,23...

0 . nhrx | . onrx | cnr
— X,t)=c2sIn —Xx (-C3—— SIh —t+C4 —cos——t
6ty( ) | ( chrz | cnr | )

for all n=1,2,3...(9)

Now substitute t=0 in the above equation (9), we have



I I
—y(x t) _,=c2sin —x( cs3— sin 0 +c4 ——cos 0) for all
I cnrzr cnrzr

n=1.23..

.. n | . |
0=c2sin —=x (-c3—— sin 0 +C4 ——cos 0) forall n=1,2,3...
| cnrz cnrz

[ using the equation (iii)]

0=cosin “Ex(0+cs ——)  foralln=123..
| cnrz
0=cacs —— sin " x  forall n=1.2,3..
cnrz |

[ since x is a variable, therefore sin px = 0]

O=c2cC4 b forall n=1,23...
cnrxr

[ since L;t 0,asl = Oandc = 0]
cnrw

O=c2C4
O=cs [ Ifc2=0,thenu (x,t) becomes zero, thereforecz = 0]

Substitute c4 value in (8), we have
y(Xx,t)=c2sin I—x(03cos D740, smch”t) foralln=1,2,3.......

y(x,t)=cz2sin I_X (cscos Cn—”t) foralln=1,2,3.......

y(x,t)=czcssin nl—ﬂx cos CnT”t foralln=1,23....... -—------ (10)
The general solution is given by

y(x,t)= ibn sin nl—”x CoS CnT”t where bn=C2€3. ------- (12)

Apply initial condition (5) in the equation (11), we have

I.e Substitute t=0 in equation (11), we have

y(x,0)= ibnsin nl—”x

. 7IX = . N
asin == = >'b, sin I—”x
n=1



. X ] . 2 .. N
asin T+O+O"": b1 sin I£x+ b2 sin T”x+ ...... + bn sin I—”x+....

Equating the corresponding terms in the above equation, we have
a=b1, and bn=0 for all n=2,3,4,....
Substitute the value of b, for n=1,2,3..... inthe equation (11), we

have

y(x,t)=bisin |£X cos CI—”t + b sin ZT”X cos Z(i—”t o

. 2 2
y(x,t)=asin |£X cos CI—”t +0.sin T”x cos %t o

y(x,t)=asin |£X cos CI—”t

Which is the required solution.

Problem:-02
A tightly stretched string of length | with fixed ends is initially in

equilibrium position. It is set vibrating by giving each point a velocity vo
sin3 (%) . Find the displacementy ( x, t).

Solution:-

o’u  , 0%

The one dimensional wave equation is ?:c P where ¢? =1 -(1)
X m

Boundary conditions are
y(0,t)=0------(2)

y (1,t)=0------(3)
Initial conditions are

y (% 0)=0----(4)

oy v <ind (XN
(&) —vpsin® () —(5)



The solution of equation (1) is given by
y (x,t) = (cicos px +cz sin px) (c3 cos cpt +c4 sincpt)  ------- (6)
Apply boundary condition (2) in equation (6), we have
I.e Substitute x=0 in the equation (6), we have
y (0,t)=(cicos 0+ cz2 sin 0) (c3 cos cpt + caSin cpt)
0=(c1.1 +c2.0) (cacoscpt +casincpt) [ using the equation (2) ]
0 =c1 (c3coscpt +cs sin cpt)
[since tis a variable, therefore c3 cos cpt +c4 sin cpt = 0]
0=c1
Substitute the value of c1 in the equation (6), we have
y (x,t) = (0. cos px +cz sin px) (c3 cos cpt +c4 sin cpt)
y (X, t) =czsin px (c3 cos cpt +c4 sin cpt) -------- (7)
Apply boundary condition (3) in the equation (7), we have
I.e Substitute x=I in the equation (7), we have
y (I,t)=c2sinpl (c3cos cpt +ca sin cpt)
0 = cz sin pl (c3 cos cpt +c4 sin cpt) [using the equation (3) ]
O=czsinpl
[ since tis a variable, therefore ¢z cos cpt +ca sin cpt = 0 ]
O=sin pl [1fco=0,theny (x,t)=0]
sinnz =sin pl
[ we know that, sinnz =0, forall n=1,2,3.....]

nz =pl foralln=1,23.....
nl—” =p, foralln=1,23.....
Substitute the value of p in equation (7), we have

y(Xx,t)=czsin nl—”x (cscos cnl—”t +C4 SIN cnl—”t) forall n=1, 2, 3,.....



Apply initial condition (4) in the equation (8), we have

I.e Substitute t=0 in equation (8), we have

y(x,0)=czsin nl—”x (cacos O +casin0)  foralln=1,23......

0 =cz2sin nl—”x (c3.1 +ca.0) foralln=1,23....
[ using equation (4)]

0 =cz2c3Sin nl—”x foralln=1,23.......

. . . . n
0 =c2cC3 [ since x is a variable, therefore sin I—”x;t 0]

0=c3
[ I1f c2=0, theny ( x, t) becomes zero, it should not be zero, therefore c2= 0]

Substitute the value of cs in equation (8), we have

y(x,t)=cz2sin nl—”x (0.cos CnT”t +C4 sinch”t) foralln=1,2,3......

y(x,t)=cz2sin nl—”x (Ca sinch”t) foralln=1,23......

y(x,t)=cz2cassin nl—”x sinch”t foralln=1,2,3.......

The general solution is given by

y(x,t)= ibn sin nl—”x sinch”t where bn=C2C4  --------- (9)

n=1
Apply initial condition (5) in the equation (9), we have
Let us first differentiate equation (9) partially with respect to t, we
have

0 % . nr__ O _._chrx
—V(Xx,t)= b, SIN —X —SIn——t
6ty( ) ; | ot |



e @
n=1

Substitute t=0 in the above equation (10), we have
gy(x ) = ibn sin M x [Cn—”]cos 0
ot o= I I
Vo Sin3 (%) =ibn [Cnl—”]sin nl—”x [ using the equation (5) ]
n=1

_ 3sin@ —sin 360
4

sin®6

. Xm . 3Xrx
Smnj——smg—— (

T V .n3X7T T
| 4 I :[CT”]blsinlx{z‘i—”]bzsinzT”x

+(3’CT”j b sin > x......

Equating the corresponding terms on both sides of the above
equation, we have

3% = blcT” (equating the coefficient of sin XI—”on both sides)

3v,l

dcr

=> =b, and

bo=0 (equating the coefficient of sin ZXT” on both sides)

3cr 33X

Vo _ b, - (equating the coefficient of sinTon both sides)

Yo
4

Substitute all the b; values in the equation (9), we have

y (x,t)=bisin Ifxsincl—”t + bz sin ZT”xsinZT—”t



4 4
+ b3 sin 3|—x smTt +b4 sin szm%t o,

| xsm—t + 0. sin ZTx3|n2(i—”t

Vg sin 3—”xsmsc—”t +0.sin 4—xsm4¢—”t +.,
12Cﬂ | | | |

3z 3cr
sin ==xsin=—=t
| 12071 | |

Which is the required solution.

Note:-

Y a
B'(1/3,a)

|
| C A

v

0(0,0)B |

| C'(21/3,-a)
Equation of the line OB'

It is a line joining two points O(0,0)andB' (1/3,a)

- X _ Y-y,
X, =% Yo=Y

Therefore it is given by




:>3iﬁzy where 0<x <1/3

Equation of the line B'C'

It is a line joining two points B' (1/3,a) and C' (21/3, -a)

- X _ Y-y,
X, =% Yo=Y

Therefore it is given by

x-1/3 y-a
20/13-1/3 —-a-a
. x—I/3: y—a

1/3 -2a
:>3x—l _y-a

| -2a
:>-M+a:y

— —2a(3x|— I)+la _y

:>—6ax+2la+la:
|
:>—6ax+3al _
|
:>w:ywhere |/3 <X< 2'/3

Equation of the line C'A

It is a line joining two points C' (21/3,-a) and A(I,0)

- X _ Y-y,
X, =% Yo=Y

Therefore it is given by

x—21/3  y—(-a)
1-21/3 0-(-a)

— 3x—2I _y+a
3l -2l a




_. (@x-2la _
|
o (3x- 2I|)a— la_

a=y

_s 3xa—?la—la _

:>3xa—3la:
|
_s 3a(x—|):
|
= 3a(x|"):ywhere 21/3 <x< .
3—ax OSXSl
! | gl
. 3a
l.e X)=<{—=(1-2x) —<x<—
y (X) é( ) %I 3
a
—(x-1 —<x<I
I( ) 3

Problem:-03

A point of trisection of a string are pulled aside through the same
distance on opposite sides of the position of equilibrium and the string is
released from rest. Derive an expression for the displacement of the string
at subsequent time and show that the mid point of the string always
remains at rest.
Solution:-

Let us draw the initial position of the string as follows

Ya

0(0,0)—




C'(21/3,-a)
Let B and C be the points of trisection of the string OA whose length is

Initial position of the string is OB'C'A, where BB'=CC'=a.

2 2
The one dimensional wave equation is Zt—l:: CZZ—U where ¢° :% -(D

X2
Boundary conditions are
y(0,t)=0------(2)

y (I,t)=0-----(3)
Initial conditions are

y(x,0)=:==(0-2x) gsm— ------ (5)

The solution of equation (1) is given by
y (X, t) = (cicos px +cz sin px) (c3 cos cpt +c4 sincpt)  ------- (6)
Apply boundary condition (2) in equation (6), we have
I.e Substitute x=0 in the equation (6), we have
y (0,t)=(cicos 0+ cz2 sin 0) (c3 cos cpt + casSin cpt)
0 =(c1 +0) (c3 cos cpt +ca sin cpt) [ using the equation (2) ]
0 =c1 (c3coscpt +cs sin cpt)
[since tis a variable, therefore c7 cos cpt +cg sin cpt = 0]
0=c1
Substitute the value of c1 in the equation (6), we have

y (x,t) = (0. cos px +cz sin px) (c3 cos cpt +c4 sin cpt)



y (X, t) =czsin px (c3 cos cpt +c4 sin cpt) -------- (7)
Apply boundary condition (3) in the equation (7), we have
I.e Substitute x=I in the equation (7), we have
y (I,t)=c2sinpl (c3cos cpt +ca sin cpt)
0 = cz sin pl (c3 cos cpt +c4 sin cpt) [using the equation (3) ]
O=czsinpl

[ since tis a variable, therefore cz cos cpt +ca sin cpt = 0 ]

O=sin pl [ 1fco=0,theny (x,t)=0]
sinnz =sin pl [ we know that, sinnz =0, forall n=1,2,3.....]
nz =pl foralln=1,23.....

nl_” =p, foralln=123...

Substitute the value of p in equation (7), we have

y(Xx,t)=czsin nl—”x (cscos cnl—”t +C4 SIN cnl—”t) forall n=1, 2, 3,.....

y(Xx,t)=czsin nl—”x (cacos CnT”t +C4 sinch”t) forall n=1,2,3...--(8)

Apply initial condition (4) in the equation (8), we have
Let us first differentiate equation (8) partially with respect to t, we

have

0 . N« 0 cnr 0 . _chr
— X,t)=cz2SIn —Xx(C3 —c0S —t+Cq4 —SIN——t
HY (X )=c X (G | 4 58I

forall n=1,23...

0 .. N cnz .. ¢cn cn cn
Sy (x.,t)=czsin I—”x (03T” sin T”t +C4 T”cosTﬂt)

for all n=1,2,3...(9)

Now substitute t=0 in the above equation (9), we have

%y(x ,t) ,,=cC2sin nl—”x (cach” sin 0 +c4 CnT”cos 0) foralln=1,23..

. n cn . cn
0=cz sin I—”x (CaTﬂ sin 0 +c4 T”cos 0) foralln=1,23..



[ using the equation (iii)]

O=c2sin nl—”x (0 +ca chn) for all n=1,2,3...
O=cz2cC4 CnT” sin nl—”x forall n=1,2,3...
O=cz2cs chn forall n=1,2,..[ since x is a variable, therefore sin px = 0 ]

O=cz2cC4 [sincech”;t 0,asl = Oandc = 0]

O=cs [ Ifc2=0,theny (x,t) becomes zero, thereforec, = 0]

Substitute c4 value in (8), we have

y(x,t)=cz2sin nl—”x (cscos CnT”t +0. sinch”t) foralln=1,23......

y(x,t)=cz2sin nl—”x (cscos CnT”t) foralln=1,23......

y(x,t)=czcssin nl—”x COS CnT”t foralln=1,2,3....... -------- (10)

The general solution is given by

y(x,t)= ibn sin nl—”x cos CnT”t where bn=C2c3. --------- (11)

n=1

Apply initial condition (5) in the equation (11), we have

I.e Substitute t=0 in equation (11), we have

y(x,0)= ibn sin nl—”x cos O where bn=czcs.

n=1

y(x,0)= ibn sin nl—”x where bn=czcs.

n=1

—X 0<x<—
| 3
=132 L<x<Z =3p sin Py
. o= !
a
—(x-1 —<x<I
P 5

=>f(x)= Y b, sin T x, 0<=x<=1
n=1



To find the value of by |,

We have to apply Fourier sine series over interval (0, ).

EJI' f(x)sm—dx

I 0

0

21/3

1/3

b, = IZ{Iff(X)SlanX+ | f(x)sdex+ j f(x)sdex}

1/3

21/3
b, = Z J'g—a smn—ﬂxdx
e |
1/3
63. 1/3 21/3
bn:_z
I/3
1/3
N7x . nax
cosT smT
(X - nl _(l - n27r2
| |2
bn:% 0
N7zx . nax
—cosT —smT
+| (x -1 I -1 pe
| |2
cosnﬂ sin 7z
6a B ey
bn:|_2 (”3 3 (1) n? 23 _(0
R T
| |2
2Nz . 2nrx
—CO0S——— —sin——
+ (1-41/3 8 |_(-2) —-2
n°r
| |2
—cosnrx sinnz
+(1-1 — - . (21/3-1)
o 2

21/3

/J'—(I 2x)S|anx+ jT(x—l)sdex

21/3

(I-2x

21/3

21/3

U — =

IxsmTﬂde+ I(I 2x)sdex+ I (x—I)sdex

1/3




6a |2<yﬁ” 12sin " |2<>)s\2”” 217 sin 27 |2W 212 sin %
, 62l 3, 3. 3 _ 3, 3 3

P 3nz n’z’ 3nﬂx\ n’r’ 3nz n’z’
2nr
12 ¢eQsnr sin
% sin n;r 3
n ﬂ n2ﬂ2
. n«m 2nrw nz . 2N«
12sin %= 212sin 22°  21%2sin %, 12 sin
b _ ba 3 3 . 3 +I sinnz
n |2 n277’_2 n277’_2 n277’_2 n277’_2 n277’_2
6al? . nr . 2nrw . nmo . . 2nrw
b, =——57515IN—+2sin ——+2sin —+sin Nz +sin ——
n°rz’l 3 3 3

[-sinnz =0 foralln=1,2,3....]

b, = (25a2 {3sm——3sm Zn—ﬂ}

n°r 3

18a 2nm
b, =— 2{sm——sn—}

nz
b, = 128a2 {sm—+( 1)"sin n_} sinzn—ﬂ:sin(nn—n—ﬂj:—(—1)”sinn—ﬂ

nz 3 3 3 3
b, = 18a 1+ (D" }smn?ﬂ

Substitute the value of b, in (11), we have
y(x,t)=i L+ (-D)" }sm?sm |_X cosch”t

n:l

y(x,t)= —Z L+ (D" }sinn?”sin nl—”x CcosS CnT”t

Which is the required solution



Problem:-04

Derive the D' Alembert's Solution of Wave Equation

Solution:-
] ] ] . 0%y 0%y
Consider the one dimensional wave equation el c’ =
X
letp-"gp-"-
ot OX

Hence equation (1) can be written as(D2-c2D'2)y=0
y=y(x,t)=c.f+p.i
Tocf
The AE s
m2-c2=0 (replace D by mand D' by 1)

m=+C,-C

----- (1)

The general solution of wave equation is C.F=f(x+ct)+g(x-ct)

P.1=0
y(x,t)=f(x+ct)+g(x-ct)+0=f(x+ct)+g(x-ct)------- (2)
where fand g are arbitrary function.

Suppose initially

y(x,0)=¢(x) -----(3)and

D
ot o0 ____(4)

Apply (3) on (2)
subt=01in (2)
y(x,0)=f(x)+g(x)
¢(x) =f(x)+g(x) [using (3)
e f(X)+g(X)= ¢(x) ------(5)
Apply (4) on (2), we get
Let us first differentiate(2) p.w.t 't'



?:c(f'(xmt)—g'(x%t))

substitute t=0 on both sides

N (e
o t_o‘c(f () -g'(x)

0=c(f'(9-9'()  (using (4))
f(x)-g(x)=0

Integrating on both sides, we get
f(x)-9(x)=k------- (6)

From equation (5) & (6), we have

f(X)= (p(x) +k)/2 and g(x)= (¢(x) —k)/2
Therefore equation (2) can be written as
Y(X,0)= (@(x+ct)+k)/ 2+ (p(x—ct)—k)/2

This is the D'Alembert’s solution of one dimensional wave equation.

EXERCISE
1.  Atightly stretched string with fixed ends points x=0 and x=I is

initially in a position given by y=yo sin3 (%) , If it is released from the rest

from this position, find the displacement y(x,t). Hint. sin3 (%) =

. Xm . 3Xrx
?;sml——smT

4
2. Astring is stretched and fastened at two points x = 0 and x = [
apart. Motion is
started by displacing the string into the form y = k(Ix — x?) from which it
Is released at time t=0. Find the displacement of any point on the string at a

distance of x from one end at time t.



3. Atightly stretched string of length 2 [ is fastened at both ends. The
midpoint of the string is displaced by a distance "b’ transversely and the
string is released from rest in this position. Find an expression for the
transverse displacement of the string at any time during the subsequent
motion.

4. Find the displacement of any point of a string, if it is of length 21 and
vibrating between fixed end points with initial velocity zero and initial

displacement given by

ﬁ in O<x<I

f(x)=
2k—$ inl<x<?2l

5. Atightly stretched string with fixed end points x=0 and x=l is initially
at rest in its equilibrium position. If it is set vibrating given each point a

2
velocity Ax(l - x) then show that y(x,t)=% > %sin nT”Xsin nazt

T a pig3s N |
6.  Astring of length I, at time t=0, the string is given a shape defined by
f(x)=kx2(I-x) where k is a constant and then released from rest. Find the

displacement of any point of the string at any time t>0.



ONE - DIMENSIONAL HEAT FLOW

Consider a homogeneous bar of uniform cross-section « (cm?2).

Suppose that the sides are covered with a material impervious to
heat so that the stream lines of heat flow are all parallel and perpendicular
to the area « .Take one end of the bar as origin and the direction of flow ass
the positive x-axis

Let p be the density, s be the specific heat and k the thermal
conductivity

The one dimensional heat flow equation is given by

ou , 0% , k
—=a"—, where a* =—

ot OX Sp ----(1)
Problem:-01

Derive the solution of one dimensional heat equation by the method of
separation of variable.
Solution:-

2
, 0°U

W.k.t the one dimensional heat equation is %u =a' 37
X

Let u=X(x)T(t)------ (2) be the solution of (1) , where X is a function x alone

and T is a function of t alone.

Differentiate (2) partially w.r.t 't', we get %u = XT'------- (3)
2

Differentiate (2) partially w.r.t 'x' twice, we get Z—lj = X"T ------- 4
X

Substitute (3) and (4) in (1), we get
XT'=azX"T




Tl
=k
a’T
T'=ka’T

T'-ka2T=0------(6)

Xk
X

X"=kX
X"-kX=0-----(7)

The equations (6) and (7) are ordinary differential equations, the solution

of which depend on the value of k.
Case (i)

Let k=0

Equation (6) and (7) becomes

(6) =>T'-ka?T=0

T'=0

dT/dt=0

Integrate on both sides , T=C1

(7)=> X"-kX=0
X"=0
Integrate on both sides, X'=C»

Integrate again, X=Cox+Cs

Therefore u(x,t)=C1(C2x+Cs)

Case (ii)
Let k be positive, i.e k=p2 (k is always positive irrespective of the value of p
Is +ve
or -ve)
(6)=>T'-p2a2T=0 (7)=> X"-p2 X=0
tilj_I_ 0%a’T =0 The A.E is m2-p2=0
ar _ p2a’dt m—_p,_p -
T X=CseP*+CeeP*-------- (11)

Log T=p2a2t+logCs
T= e p?a’t+log C,

- pZa’t
T=C,e

Therefore u(x,t)= C,e”*" ( CseP+Cse¥)




Case (1)
Let K be negative, i.e k=-p2 (k is always negative irrespective of the value of

p is +ve or -ve)

(6)=>T'+p2a2T=0 (7)=>X"+p2 X=0
%Jr 0%a’T =0 The A.E is m2+p2=0
m=pi,-pi
dT 2.2 -
o - pad X=CgCOSpX+CgSiN pPX-------- (13)

Log T=-pZazt+logC-
T= e p2a’t+log C,

2,2

T=C,e " -mmmmmee (12)

Therefore u(x,t)= C,e "*"* ( Cscospx+Casin px)

From the above three cases, we have the following set of possible solutions
for one dimensional heat flow equation.

(1) u(x,t)=C1(Cox+C3)

(i) u(x,t)= C,e”*" ( CseP+Cse )

(iii) u(x,t)= C,e P ( Cscospx+Cosin px)

The solution (iii) is the only suitable solution of the heat equation.

Problem:-02
. ou 0d%u : - _
Solve the equation rar with boundary conditionsu (x,0)=3
X
sinnrx X,

u(O,t)=0andu(1,t)=0,where0<x<1, t>0.
Solution:-

2
The given one dimensional heat equation is %u = Z—u -(1)where c2=1
X

2

The solution of the one dimensional heat equation (1) is




u(x,t) = (c cos px+c,sinpx)e*** (2)
Given boundary conditions are
u(o,t)=0------ (3) and

u(x,0)=3sinnz X-------- (5) whereO<x<1,t>0.
Apply the equation (3) in (2), we have
I.e Substitute x=0 in the equation (2), we have

—c2p?t

u(0,t) = (c, cos0+c, sin0)e

0= (¢, 1+c,00e %" [ Using the equation (3) ]
0=c e " [ since tis a variable, therefore e 20 ]
O=c,

Substitute the value of c1 in equation (2), we have
u(x,t) = (0.cos px+ ¢, sin px)e "
u(x,t) = (c, sin px)e """
u(x,t)y=c,sinpx e<** (6)
Apply the equation (4) in (6), we have
I.e Substitute x=1 in the equation (6), we have

—c2p?t

ulLt)=c,sinp e

0=c,sinp e [ Using equation (4) ]
0=c,sinp [ since t is a variable, therefore e 20 ]
O=sinp

[ If c2 =0, then u(x,t) becomes zero, it should not be zero, therefore c>+0]
sinnz =sinp [ we know that, sinnz =0, forall n=1,2,3.....]
=>nzx=p, forn=123...

Lep=nzn,forn=123..
Substitute the value of p in the equation (6), we have



u(x,t)=c,sinnax e*"**  forall n=1,2,3....
The general solution is
u(x,t)=h sinnmx e*"** forn=1,2,3,.., where bn=c2

The complete solution is

u(x,t)=> b, sinnmx g oAt
n=1

Apply the equation (5) in (9), we have

I.e Substitute t=0 in the equation (9), we have

u(x,0)=>_ b,sinnax e’

n=1

3sinnz x=>_ b, sinnzax

n=1

3sinnzx = b sin zx +b,sin 2zx +.....+ b, sin nax
+b, ,sin(n+1)72x +..

b1=0 (compare sinzx)
bo=0 (compare sin2ax)
3=bn (compare sinnax)

O=bn+1 (compare sin(n +1)zx)

Substitute the value of by in the equation (9), we have

—c212 7% —c?2%7%

u(x,t) =bsinzx e
u(x,t)=3sinnzx e " where c2=1
u(x,t)=3sinnzx e ",

Which is the required solution .

+b,sin27x e + o +b,sinnzx e

—c%n?7%t

+



Problem:-03

2

Solve %u =c? Z—lj Subject to the boundary condition u(0,t)=0, u(l,t)=0 &
X

u(x,0)=x.

Solution:-

2
The given one dimensional heat equation is %u =c? Z—lj
X

The solution of the one dimensional heat equation (1) is

u(x,t) = (c cos px+c,sinpx)e*** (2)
Given boundary conditions are
u(o,t)=0------ (3) and

Apply the equation (3) in (2), we have
I.e Substitute x=0 in the equation (2), we have

—c2p?t

u(0,t) = (c, cos0+c, sin0)e

0= (¢, 1+c,00e %" [ Using the equation (3) ]
0=c e " [ since tis a variable, therefore e 20 ]
O=c,

Substitute the value of c1 in equation (2), we have
u(x,t) = (0.cos px+¢c, sin px)e "

u(x,t) = (c, sin px)e """

u(x,t)y=c,sinpx e*** (6)

Apply the equation (4) in (6), we have

I.e Substitute x=I in the equation (6), we have



u(l,t)=c,sinpl e~

0=c,sin pl e " [ Using equation (4) ]
0=c,sin pl [ since t is a variable, therefore e 20 ]
0 =sin pl

[ 1f c2 =0, then u(x,t) becomes zero, it should not be zero, therefore c>+0]

sinnz =sin pl [ we know that, sinnz =0, forall n=1,2,3.....]

=> nﬂ:p,

Substitute the value of p in the equation (6), we have
u(xt)=c,sinnm e*"**  foralln=1,2,3.. = —eemeeee- (7

The general solution is

L NAX _c2n2p — _
u(x,t) =b, sml— e forn=1,2,3,...., where bp=c2  -------- (8)
The complete solution is

u(x,t)=>_ b, sin nTﬂX T p— (9)

Apply the equation (5) in (8), we have

I.e Substitute t=0 in the equation (9), we have

u(x0) =3 b, sin”T”X e’

n=1

- _nax
X=> bnsmT
=1

Expand LHS of the above equation in a half range Fourier series over the
interval (O,l).

2 nax 2% . nax
bn==| f(x)sin——dx == | xsin—-dx
" |£ (x)sin=] |£ |



x=I|

n n
2 COST —SII’]T
br=2(x) - @
n ( nr () n271'2
2
I I x=0
x=I
n » . N7X
IXxcos—— 1“sin ——
_2 |
== = _| =
| nr nr?
x=0
x=|
n7zx , . Nax
9 IXxcos—— 12sin ——
n——9| — +
| nr n’r?
x=0
_2[( 1Pcosnz)  (I%sipiin 12.0.cos0 ) ( I*sip0
bn="=41 - + 2 2 | |~ - 2
| Nz Ar Nz /gﬂ'

2
bnzg{_(l COSI’UT]} sinn 7 =0 foralln=1,2,3....
I nm
bn:M cosn 7 = (-1)" foralln=1,2,3....
nr
-21(-1)"
bn= D
nrz
2| _1 n+l
bn= D

nz wheren=1223...

Substitute in (9), we have

> 2|(_1)n+1 . N7nX 202 2
u(x,t) = sin gt
(x.) ; nrz |

Which is the required solution .

Problem:-04

) ) . ou , 0%U
Find the solution to the equation ks P
X

that satisfies the

conditions (i) u(0,t)=0 (ii) u(l,t)=0 for t>0 and (iii) u(x,0)= {I x O0<x<l/2

-x 1/2<x<l



Solution:-

2
The one dimensional heat equation is aa—‘: =a’ 2 -
X

The boundary conditions are
(1) u(0,t)=0for t>0
(ii) u(l,t)=0 for t>0
(iii) u(x.0)= {I

X O<x<l/2
-x 1/2<x<l

The solution of one dimensional heat equation is
u(x,t)=(Acos px +B sin px) e "t --mmmm- (1)

Apply condition (i) on (1), we get

Subt=0in (1), we get

u(0,t)=(Acos 0 +B sin 0) e «**

0=(A) e ™"

0=A [e=***" is non zero]
Sub the value of Aiin (1), we get

u(x,t)=B sin px e Pt --mmmmm- (2)

Apply condition (ii) on (2), we get

Sub x=l'in (2), we get

u(l,t)=B sin pl e "

0=Bsinpl e "

0=B sin pl [e=P" is non zero]
O=sin pl [ B cannot be zero ]
sin an=sin pl, for n=1,2,3,....

pl=m, for n=1,2,3...

pz? forn=1,2,3...

Sub the value of pin (2) , we get



u(x,t)=B sin @ e I memeeee- (3) for n=1,2,3..

The most general solution is

a’z?n’t

u(xt)= 38, sin A g @
n=1

Applying condition (iii) on (4) ,we get
Sub t=0in (4), we get

u(x,0)= > B, sin @ e’
=1

U(0)=(x)= 3B, sin @,Where u(x,0)= { X O<x<l/2

l-x 1/2<x<]|

To find Bn

Use half range Fourier sine series over the interval 0<x<I, we get
|
BF%[f(x)sin@dx

0

1/2 |
Bn=3j f(x)sin%dx+gf £ (x)sin 7% dx
1) | 1) |
1/2 |
Bn=gf xsin%dx+Z I (I—x)sin%dx
I 0 I I|/2 I

1/2 |

nzx . nax nzx . nax
5| | —COs—= —sin e ’ —COS—— —sin ——
=Z1x ~1. +23(1 =X —(-1).
" nz n’z? I (=) nz D n’z?
I |2 0 I |2 1/2
_2 1/2) —C0S—— 1 —sin—- ) —cos0 . —sin0
n | nx . 2_2 nz 1 n2r?
| |2 | |2
cosn” sin Nz
2 —cosnrx —sinnzx Y Sy
(-1 -1 ———=1|-(-1/2 -1).
+—1(1-1) ryen (-1 N2 ( 12) ryen +(=1) 22

I |2 I |2



Nzax . Nr nr . Nrxr
) —1?cos—— 12sin—— ) COS— sm7
n—— 2 |y, > 22 +—=<(1/2) +| =5
I 2nzw n“z I nz n°z
|

, —|2W Zsin " | |290{’“” 12 sin "7
= 2 - "o|.2 2 . 2

2N n’r? | 2nrxr " n?x?
12sin— 1?sin
_2 N
=2
| n’r? nr?
. Nz
4] sin—
Bn= 2 22
n°r

Sub Bn in (4), we get
. Nt
w 4l sin— a?z2n?t
u(x,t)= 2 gin ™MX v
( ) nZ:;‘ n’r? | ¢

> 4] . Nr . #anXx -azﬂijnzt
u(x,t)= ——— sin—SIn — ¢ !
( ) nZ:;‘ nzr? 2 I

Which is the required solution.

STEADY STATE CONDITIONS
Steady state condition in heat flow means that the temperature at

any point in the body does not vary with time. i.e it is independent of time t.

Problem:-01

Derive the solution of one dimensional heat flow equation under

steady state.
Solution:-
. . . . ou ) o%u
The one dimensional heat equation is T o (D
X

Let us assume the steady state conditions prevails.



In steady state condition, the temperature(u) is depend only on x

and noton t.

ou
Hence —=0----- 2
= (2)

sub (2) in (1), we get Y = g-eee-(3)

ox®
Integrate (3) w.r.t x, we get

ou
—=a
OX
Integrate again w.r.t x, we get

u(x)=ax+b------ (4),where aand b are arbitrary constant.

Which is the required general solution.

Problem:-02(steady state and zero boundary conditions)

A rod of 30cm long has its ends A and B kept at 20° and 80°
respectively until steady state conditions prevails. The temperature at each
end is then suddenly reduced to 09, and kept so. Find the resulting
temperature u(x,t) taking x=0 at A.

Solution:-
The temperature function u(xt) is the solution of the one

dimensional heat equation

ou_ ,0%u 1
o " 1)

When the steady state condition prevails

In steady state condition, the temperature is depend only on x and

nhotont.
Hence ";—‘:: 0 200 80°C
Sub (1), we get 2%! 0 A <eomeee- 30cm---------- > B
X

Integrate w.r.t x, we get



au_
OX

a
Integrate again w.r.t x, we get
u(x)=ax+b------ (2), where a and b are arbitrary constant.
At the end A (x=0)
Since the temperature is 20°
u (0)=20----(*),
Apply(*) on (2), we have
sub x=01in (2)
u(0)=a.0+b
20=b [use (3)]
Sub the value of b in (2), we have
u(x)=ax+20------ (3)
At the end B (x=30)
Since the temperature is 80°
u(30)=80---(**)
Apply(**)on (3), we have
sub x=301in (3)
u(30)=30a+20
80=30a+20
a=2
Sub the value of ain (3), we have
u(x)=2x+20------ (@)
Hence the boundary and initial conditions are
(M u(O,t)=0forallt>0 (attheendA)
(i)  u(30,t)=0forall t>0 (atthe end B)
(i)  u(x,0)=2x+20
Now the suitable solution which satisfies our boundary conditions is

given by



u(x,t)=(Acos px +B sin px) e "t ---m--- (5)
Apply condition (i) on (5), we get

Sub x=0in (5)

u(0,t)=(Acos 0 +B sin 0) e «**

0=(A) [ e**"is non zero]
Sub the value of Ain (5), we get

u(x,t)=(B sin px) e Pt emmm- (6)

Apply condition (ii) on (6) , we get

Sub x=30, we get

u(30,t)=(B sin 30p) e «**

0=(B sin 30p) [ e*"is non zero]
0=sin 30p [ B cannot be zero]
sin - =sin 30p, for n=1,2,3,....

30p=m, forn=1,2,3...

pzﬂ forn=1,2,3...
30

Sub the value of piin (6) , we get

a’z?n’t

u(x,t)=B sin % e W e (7) for n=1,23...

The most general solution is

a’z?n’t

U(xD)= 2By sin 5 6 e (8)
n=1

Applying condition (iii) on (8) ,we get
Sub t=0in (8), we get

u(x,0)= iBn sin X g0
n=1 30
f(x)=2x+20= 3B, sin %
n=1

To find Bn



Use half range Fourier sine series over the interval 0<x<30, we get

|
BF%IU(X,O)Sih%dx
0
30
Bn=£Iu(x,0)sin DX 4x
30 30

30
Bn=if(2x - 20)sin%dx
15 30

30

1V/5,4 . NnX

1 —cosg —smE

Bn=—{(2x +20)] ——39 |- (2)) — 20
" 15 (2x+20) nx @) nr?
30 30?

30
—30(2x+20)cos—ﬂx 2.302sin X
30 30

+

n“zw

0

{( 30(60 + 20) cos nn] N (2.302 sin nn]_(—30(20) cosO] _(2.302 sin 0]}

n27T2 nmx |’1277,'2
B { — 2400 cos nﬂj (eooj}
n__
nmx

Bn= o0 a1 +1f

15n7z

Bn=20 441y }
nr

Sub Bn value in (8), we get

Z”ant

u(x,t)= i 3—3{1—4(—1) }sm % 30°
n=1

Which is the required solution.

Problem-02(steady state and zero boundary conditions)
An insulated end of length | has its ends A and B kept at a® and b°

Celsius respectively until steady state conditions prevails. The temperature



at each end is suddenly reduced to zero degree Celsius and kept so. Find
the resulting temperature at any point of the rod taking the end A as origin.
Solution:-

The temperature function u(xt) is the solution of the one

dimensional heat equation

ou 0% 1
o " 1)

When the steady state condition prevails

In steady state condition, the temperature is depend only on x and

notont.
Hence N _ 0 ac°C beC
ot
Sub (1), we get 2 =0 N — [ | Pm— > B
X

Integrate w.r.t x, we get

ou
& =a
Integrate again w.r.t x, we get
u(x)=ax+b------ (2), where a and b are arbitrary constant.
At theend A
x=0 and u (0)=a°, apply this condition on (2), we have
u(0)=a.0+b
ac=b
Sub the value of b in (2), we have
u(x)=ax+ao------ 3)
At the end B
x=I and u(l)=be°, apply this condition on (3), we have
u(l)=la+a°c
bo=la+a°
a=(bo-a%)/I



Sub the value of ain (3), we have
u(x)=(b°-a°)x/I +a°------ (@)
Hence the boundary and initial conditions are
() u(O,t)=0forall t>0
(i)  u(l,v)=0 for all t>0
(iii)  u(x,0)= (bo-a°)x/1 +ac
Now the suitable solution which satisfies our boundary conditions is
given by
u(x,t)=(Acos px +B sin px) e Pt --mm--- (5)
Apply condition (i) on (5), we get
Sub x=0in (5)
u(0,t)=(Acos 0 +B sin 0) e «**
0=(A) [ e**"is non zero]
Sub the value of Ain (5), we get
u(x,t)=(B sin px) e Pt emmm- (6)
Apply condition (ii) on (6) , we get
Sub x=I, we get
u(l,t)=(B sin Ip) ="
0=(BsinIp) [ e"*is non zero]
O=sinlp [ B cannot be zero]
sin an=sin Ip, for n=1,2,3,....

Ip=mm, for n=1,23...

pz? forn=1,2,3...

Sub the value of piin (6) , we get

u(x,t)=B sin @ e 7 - (7) for n=1,23...

The most general solution is



_a 2720t

u(xt)= ZB sin I_ S (8)

Applying condition (iii) on (8) ,we get
Sub t=0in (8), we get

u(x,0)= iBn sin @ e
u(x,0)= ZB sin I_ where u(x,0)=(bec-a°)x/I +a°

To find Bn

Use half range Fourier sine series over the interval 0<x<30, we get

|
BF%IU(X,O)Sih%dx
0
|
BF%IU(X,O)Sih%dx
0

|
Bn=|gf[(b° “a%)xl + a°]sin@dx
0

nzx . NnX
2 —COST —-Sin ——
=2 d[(0° —a°)x/1 +a°] ~[(0° —a°)/1] —;
| nr Nz
| |2 o
|
5 || ~10° —a®)x/1 +aJeos ™ | [ [(b° ~a°) /11N sin
n—— I + I
| nr n?z?

2 [ =1[(b° —a®’)+a°]cosnz N [(b° —a°)/1]1?sinnx _(—I[a°Jcos0 N [(b° —a°)/1]1%sin0
| nmx n?r? nmx n’r?

Bn:g{[—l[(b" —a°)+a°]cos nﬂ)+ _[— I[a°]c050}}
| Nz nrx

Bn——{ [(b° —a°)+a’]cosnz +a° cosO}




Bn=%{—b°(—l)” +a°)

Sub Bn value in (8), we get

a’z?n’t

u(x,t)= %i %{—b"(—l)” +a°}sin @ e "
n=1

Which is the required solution.

Problem:-01(Steady state conditions and Non-Zero boundary conditions)
The end A and B of a rod 30cm long have their temperature kept at
20° and the another end at 80° until the steady state condition prevails. The
temperature of the end B is suddenly reduced to 60° and kept to while the
end A is raised to 40°. Find the temperature distribution in the rod after
time t.
Solution:-
The temperature function u(xt) is the solution of the one

dimensional heat equation

ou_ ,0%u 1
o " 1)

The solution may be u(x,t)=us(x)+u:(x,t)------ (2)

Steady state condition-1 Steady state condition-2

A B / B

x=0 x=30

u=20 u=80 x=0 x=30
(i) u(0)=20 (ii) u(30)=80 u=40 u=60
u(x)=ax+b (i) u(0)=40 (ii) u(30)=60
apply (i), we get u(x)=ax+b
u(0)=b apply (i), we get
20=b u(0)=b




Sub the value of b, we get
u=ax+20

Aplly (ii), we get
U(30)=30a+20
80=30a+20

a=2

Sub the value of a, we get
u(x)=2x+20

40=b

Sub the value of b, we get
u=ax+40

Aplly (ii), we get
U(30)=30a+40
60=30a+40

a=2/3

Sub the value of a, we get

us(X)=2x/3+40

Substitute the above values in (2), we get

u(x,t)=2x/3+40+u(X,t)--------- (3)

The boundary conditions are

(a) u(0,t)=40, for t>0

(b) u(30,t)=60, for t>0

(©) u(x,0)=2x+20
Now the suitable solution which satisfies our boundary conditions is given
by

u(x,t)=2x/3+40+(Acos px +B sin px) e *Pt------- (4)

Apply condition (i) on (4), we get

Sub x=0in (4)

u(0,t)=40+(Acos 0 +B sin 0) e ***

40=(A+40) [ e*"is non zero]

A=0

Sub the value of Aiin (4), we get

u(x,t)=2x/3+40+(B sin px) e P ------- (5)

Apply condition (ii) on (5) , we get

Sub x=30, we get

u(30,t)=20+40+(B sin 30p) e ™"




60=60+(B sin 30p) [ e*"is non zero]
0=sin 30p [ B cannot be zero]
sin n =sin 30p, for n=1,2,3,....

30p=m, forn=1,2,3...

pzﬂ forn=1,2,3...
30

Sub the value of pin (5) , we get

a’z?n’t

u(x,t)=2x/3+40+B sin % Y — (6) for n=1,2,3..

The most general solution is

a’z?n’t

u(x,t)=2x/3+40+ iBn sin % N — (7)
n=1

Applying condition (iii) on (7) ,we get
Sub t=0in (7), we get

u(x,0)= 2x/3+40+an sin % e

u(x,0)=2x/3+40+ an sin %, where u(x,0)=2x+20
2x+20=2x/3+40+ le sin %
2x+20-2x/3-40= le sin %

4x/3-20= 38, sin 1%
n=1 30

To find Bn

Use half range Fourier sine series over the interval 0<x<30, we get

30
Bn=iju(x,0)sin%dx
304 30

30
Bn=ij(4x/3—20)sin@dx
15 30



30

N7X . nnx
1 —cos5 —sin——
=" [4x/3-20] ———= |—[4
n 15 [4x/3-20] i [4/3] 72
30 30° 0
1 —cosnr —sinnz —cos0 —sin0
= - - T2 4 -
n 1 [40-20] nr [4/3] 23 [-20] nz +[413] 22
30 302 30 302
B.= 1 (—600cosnn] (6000030]
= _
15 Nz Nz
—40
Bn="—{(-D" +1}
nz

Sub Bn value in (7), we get

u(xt)=2x/3+40+y 21y 1 1lsin % e W
n=1

u(x.t)= 2x/3+40- 23 %{(—1)“ +1Jsin % e ¥
T

n=1

Which is the required solution.

TEMPERATURE GRADIENT

The rate of change of temperature with respect to distance is called

temperature gradient and it denoted by Z—i

FOURIER LAW OF HEAT CONDUCTION



The rate at which heat flows across an area A at a distance x from one

end of a bar is given by Q=—KA(Z—§)X , where K= thermal conductivity, and

(Z—u)x IS temperature gradient at x.
X

Thermally insulated ends
If there will be no heat flow passes through the ends of the bar then that
two ends said to be thermally insulated.

By Fourier law we have Q=0 at both ends.

e —KA(Z—;J()FO at both ends

. ou _

ie (&)X—O at both ends

i.e (X )atx-0=0 and (2 )ax=i=0
OX OX

One end is thermally insulated

Problem:-01

ox?

(i)

Solve the problem of heat conduction in a rod given that (i) %u =a

u is finite as t tends to infinity (iii) Z_;J( =0for x=0 & x=I, t>0 (iv) u=Ix-x2for

t=0, 0<x<I
Solution
. . . . au ,0%
The one dimensional heat equation is Pl v (D
X

On solving this equation (1) by the method of separation of variable and
applying condition (ii) , we get the correct solution of the form
u(x,t)=(Acos px +B sin px) e "t ---m--- (2)

Now condition (iii) can be rewritten as follows

ou@t)
S =0-(a)



ou(l,t)
O RIEE )

Differentiating (2) partially w.r.t x, we get

ou(x,t)

> =(-Ap sin px +Bp cos px) e« Pt -mmmmm- (3)

Now applying condition (a) on (3), we get

sub x=0in (3)

%=(-Ap sin 0 +Bp cos 0) e """

0=Bp e "

0=Bp [ e in non zero]
0=B [p cannot be zero]

Sub the value of B in (2) , we get
u(x,t)=(Acos px) e *Pt------- 4)

Now applying condition (b) on (4), we get
Differentiate (4) partially w.r.t x, we get

ou(x,t) _

> -Ap sin px e Pt _______ (5)
Sub x=lin (5), we get

ou(l,t) —
OX

-Ap sin pl e

0=-Apsin pl e

0=-Ap sin pl [e“"" isnon zero]
0=sin pl [A, p are cannot be zero]
sin an=sin pl, for n=0, 1,2,3,....

pl=m, for n=0, 1,2,3...

pz? for n=0, 1,2,3...

Sub the value of pin (4) , we get



u(x,t)=A cos @ R (6) for n=0,1,2,3...

The most general solution is

a’z?n’t

u(xt)=Act 3 A cos@ S (7)

n=1

Applying (iv) on (7), we get
Sub t=0in (7), we get

u(x,0)= Aot > A cos@ e’
=1

IX-x2= Ao+ > A, cos@ ——————— (8)
n=1

To find Ao & An
Use half rand cosine series for the function Ix-x2 over the interval

O<xl.

IX-x2=ao/2+ i a, cos@ ——————— 9
n=1

|
ao=lzju(x,0)dx
0

|
ao=|2£(lx —x?)dx

|
an=lzju(x,0) cosnTﬂde
0



|
an=|§j(|x—x2)cos”T”xdx
0

. NnX nzx

2 —Sin—— —COST
an="-1{(Ix — x?) —(1-2x) ——;

| nr Nz

| E .
&F%_( _17 —sinnx _a-21) —cosnrx _(0-0) —-sin0 (-
ﬂ -
T |2 I

o)

| Nz

— _2|3 n
an—m{(—l) +1}
Sub ag and an in (9), we get
 Ix-x2=(12/3) /2+z {( 7" +1}cos””T ------- (10)
Sub (10) in (8) , we get
(12/3)/ 2+z . AN }cos@= AotS A cos@
From the above by comparison, we get
Ao=|2/6
—21? )
A _W{(—l) +1f
Sub Ap and An in (7), we get
u(x)=12/6+ 3 ;f_'z{(_l)n +1jcos ™K & F e @)
n=1 T

u(x,t)= |2/6-£i iz{( 1) +1}cos|—x e

n=1

Which is the required solution

0 —=

cosO

|2



TWO ENDS ARE THERMALLY INSULATED
When the two ends x=0 and x=I of a rod of length | is thermally

insulated then we have the following boundary conditions.

.. Ou ..y Ou
)— =0 (i) — =0
() aX at x=0 ( ) aX at x=I
Problem:-
. ou ,0% : : -
Solve the equation Fikdrv subject to the following conditions
X

() u is finite when t tend to infinity

i) M —oforall t>0
OX

at x=0
(ii1) u=0 when x=I, for all t>0
(iv) u=uo when t=0 for all values of x between 0 and |
Solution:-

2
The one dimensional heat flow equation is %u =a’ Z—f
X

Solving this equation by the method of separation of variable and
applying conditions, we get the solution of the form
u(x,t)=(A cos px +B sin px) e P --mm--- (1)
Applying condition (ii) on (1),
Differentiate (1) partially w.r.t x, we get

ou(x,t)

> =(-Ap sin px +Bp cos px) e ***

Sub x=0 on both sides, we get

%z(—Ap sin 0 +Bp cos 0) e ***
0=Bp e "
0=Bp [e" is non zero]

0=B [p cannot be zero]



Sub the value of B in (1), we get

u(x,t)=Acos px e __________ 2)

Applying condition (iii) on (2), we get

Sub x=I'in (2), we get

u(l,t)=Acos pl e ***

0=Acospl e=**

0=A cos pl [ e is non zero]

O=cos pl [ If Alis zero it gives trivial solution]

cos@ =cos pl, where n=1,2,3,......

_(@n-D7
)
_@n-Dr
-2

pl

p

Sub the value of p in (2), we get

_(2n-1)*a’at

az. (3)

The most general solution is given by

u(x,t)=A cos (2n—Dmx e

(2n-1)2 ot

az. (4)

Applying condition (iv) on (4), we get
Sub t=0in (4), we get

@n-Dax -
n ——e
n=1 2'

Since the L.H.S of (5) is constant, to find the constant we use some
fundamental calculus as follows

Uo= A1 COS % + A1 cos + Az cos 32—7?(+ A3z cos 52_”;( e T — (6)



To find An

Multiply (6) by cos w and integrate with respect to x from O to I, we
get
| | |
qu cos (2N=U gy Alj cos = cos L=V gy + A, j cos 7 cos
) ) 2l 2l ) 2l
(2n—1)ax dx
2l
| |
+ Az j cos 2 cos PN=D™ gy y . An j cos BNV oog 2N=DX oy
0 2l 2l 0 2
|
WK.T Jcosmxcos nxdx = 0if mis not equals ton
0
| |
Uo j cos ZN=D™ gy= A, j cosz ZN=D™ 4y
) 2l ) 2l
_sin (2n —1)ax !
9 o (2n —1)ax
Uo| —r3n 1)z = Anl [1+ cos B 1/2 dx
21 .
. (2n-1)nx !
=2lsin+—*— |
Uo 2l = An/ZJ 1+ cos 2N=D™ gy
@n-1r ) |
0
| G (20 =D '
2l =) Zp o] L[
uo((Zn 1T ]O /21000 | —on s
I 0
_Isin BN =D |
UO( —A b A g, 0]=An/2 | +
@n-Yr 2 @n-Yr @n-Yr

0

UO( -2l sin(zn_l)ﬂ]=An/2{l+( m sin@n-z + ! sinoj}
@2n-Drx 2 @2n-Yx @2n-Dx




_2 . @n-Dx)_
uo{(Zn—l)nsm > ]—An/2{|}

2 Uo

A=Y (2n 1) =
4uo n+1
A= @n-Yr )

Sub the value of Anin (4) , we get

u(x,t)= 2 (2n 1) (-D)"*cos i

Which is the required solution.

(2n-1)ax

_(2n-1)*a’at

412



